Suppr超能文献

用于足扫描形状预测的无偏分组配准。

Unbiased groupwise registration for shape prediction of foot scans.

机构信息

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China.

The Quartermaster Research Institute of Engineering and Technology, Institute of System Engineering, AMS, PLA, Beijing, 100010, China.

出版信息

Med Biol Eng Comput. 2019 Sep;57(9):1985-1998. doi: 10.1007/s11517-019-01992-1. Epub 2019 Jul 20.

Abstract

A graph-based groupwise shape registration algorithm for building statistical shape model (SSM) is proposed, which has been successfully applied to shape prediction of foot scans. Establishing unbiased and effective shape correspondences of large-scale data sets is extremely challenging, for the inappropriate selection of initial mean shape and non-rigid registration of shape with large-scale deformation. To address these issues, first, we use a simplified graph to model the shape distribution in metric space and an edge-guided graph shrinkage to deform the shapes. Then, the groupwise registration is performed by iteratively performing the graph shrinkage until the shape converges. And, the correspondences of training shapes are obtained by propagating the converged shape to the original data along each shrinkage path. Compared with traditional forward and backward models of groupwise registration, the proposed method is data-driven without initial mean shape as input. Moreover, under the constraint of the established graph, the non-rigid registration can perform more accurately by restricting shape register to its neighbors. Based on the shape correspondence, the SSM of foot shapes is constructed and applied to shape prediction by taking the collected anthropometric information as predictor. Experiments demonstrate that the proposed method can obtain robust shape correspondences and SSM capability with respect to model generalization, specificity, and compactness. The application of shape prediction model shows an average prediction error lower than 1% for general foot size. Graphical abstract The graphical abstract of unbiased groupwise registration for foot prediction.

摘要

提出了一种基于图的组形状配准算法,用于构建统计形状模型(SSM),该算法已成功应用于足扫描的形状预测。对于大规模数据集,建立无偏且有效的形状对应关系极具挑战性,因为初始均值形状的选择不当和具有大规模变形的形状的非刚性配准。为了解决这些问题,首先,我们使用简化的图来模拟度量空间中的形状分布,并使用边缘引导的图收缩来变形形状。然后,通过反复执行图收缩来进行组配准,直到形状收敛。并且,通过沿着每个收缩路径将收敛的形状传播到原始数据,来获得训练形状的对应关系。与传统的组配准的正向和反向模型相比,所提出的方法是数据驱动的,没有输入初始均值形状。此外,在建立的图的约束下,通过限制形状注册到其邻居,可以更准确地进行非刚性注册。基于形状对应关系,构建了足形 SSM,并通过将收集的人体测量信息作为预测器来应用于形状预测。实验表明,该方法可以获得稳健的形状对应关系和 SSM 能力,具有较高的模型泛化、特异性和紧凑性。形状预测模型的应用表明,对于一般的足尺寸,平均预测误差低于 1%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验