Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant St. 159 Goessmann Lab, Amherst, MA 01003, USA.
ChemSusChem. 2012 Jul;5(7):1280-90. doi: 10.1002/cssc.201100717. Epub 2012 Jun 13.
We have developed a kinetic model for aqueous-phase production of levulinic acid from glucose using a homogeneous acid catalyst. The proposed model shows a good fit with experimental data collected in this study in a batch reactor. The model was also fitted to steady-state data obtained in a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). The kinetic model consists of four key steps: (1) glucose dehydration to form 5-hydroxymethylfurfural (HMF); (2) glucose reversion/degradation reactions to produce humins (highly polymerized insoluble carbonaceous species); (3) HMF rehydration to form levulinic acid and formic acid; and (4) HMF degradation to form humins. We use our model to predict the optimal reactor design and operating conditions for HMF and levulinic acid production in a continuous reactor system. Higher temperatures (180-200 °C) and shorter reaction times (less than 1 min) are essential to maximize the HMF content. In contrast, relatively low temperatures (140-160 °C) and longer residence times (above 100 min) are essential for maximum levulinic acid yield. We estimate that a maximum HMF carbon yield of 14% can be obtained in a PFR at 200 °C and a reaction time of 10 s. Levulinic acid can be produced at 57% carbon yield (68% of the theoretical yield) in a PFR at 149 °C and a residence time of 500 min. A system of two consecutive PFR reactors shows a higher performance than a PFR and CSTR combination. However, compared to a single PFR, there is no distinct advantage to implement a system of two consecutive reactors.
我们开发了一种使用均相酸催化剂从葡萄糖生产乙酰丙酸的水相生产动力学模型。所提出的模型与在间歇式反应器中收集的本研究中的实验数据拟合良好。该模型还拟合了在活塞流反应器 (PFR) 和连续搅拌釜式反应器 (CSTR) 中获得的稳态数据。该动力学模型由四个关键步骤组成:(1) 葡萄糖脱水形成 5-羟甲基糠醛 (HMF);(2) 葡萄糖逆/降解反应生成胡敏素 (高度聚合的不溶性碳质物质);(3) HMF 再水合形成乙酰丙酸和甲酸;和 (4) HMF 降解形成胡敏素。我们使用我们的模型来预测在连续反应器系统中 HMF 和乙酰丙酸生产的最佳反应器设计和操作条件。较高的温度(180-200°C)和较短的反应时间(小于 1 分钟)对于最大化 HMF 含量至关重要。相比之下,相对较低的温度(140-160°C)和较长的停留时间(超过 100 分钟)对于获得最大的乙酰丙酸产率至关重要。我们估计,在 200°C 和 10 秒的反应时间下,在 PFR 中可以获得 14%的最大 HMF 碳产率。在 149°C 和 500 分钟的停留时间下,在 PFR 中可以以 57%的碳产率(理论产率的 68%)生产乙酰丙酸。两个连续 PFR 反应器的系统比 PFR 和 CSTR 组合具有更高的性能。然而,与单个 PFR 相比,实施两个连续反应器系统没有明显的优势。