Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, 14424 Potsdam, Germany.
J R Soc Interface. 2012 Nov 7;9(76):2911-22. doi: 10.1098/rsif.2012.0310. Epub 2012 Jun 13.
The egg capsules of marine prosobranch gastropods, commonly know as whelks, function as a protective encapsulant for whelk embryos in wave-swept marine environments. The proteinaceous sheets comprising the wall of whelk egg capsules (WEC) exhibit long-range reversible extensibility with a hysteresis of up to 50 per cent, previously suggested to result from reversible changes in the structure of the constituent protein building blocks. Here, we further investigate the structural changes of the WEC biopolymer at various hierarchical levels using several different time-resolved in situ approaches. We find strong evidence in these biological polymers for a strain-induced reversible transition from an ordered conformational phase to a largely disordered one that leads to the characteristic reversible hysteretic behaviour, which is reminiscent of the pseudoelastic behaviour in some metallic alloys. On the basis of these results, we generate a simple numerical model incorporating a worm-like chain equation to explain the phase transition behaviour of the WEC at the molecular level.
海洋腹足纲软体动物的卵胶囊,通常被称为骨螺,作为在波涛汹涌的海洋环境中保护骨螺胚胎的包裹物。构成骨螺卵胶囊(WEC)壁的蛋白质薄片具有长达 50%的远程可逆拉伸性,先前的研究表明这是由于组成蛋白质结构单元的可逆变化所致。在这里,我们使用几种不同的时间分辨原位方法进一步研究了 WEC 生物聚合物在各个层次上的结构变化。我们在这些生物聚合物中发现了强有力的证据,证明存在一种应变诱导的从有序构象相到大部分无序相的可逆转变,从而导致了特征性的可逆滞后行为,这让人联想到某些金属合金中的伪弹性行为。基于这些结果,我们生成了一个简单的数值模型,其中包含一个蠕虫状链方程,以解释 WEC 在分子水平上的相转变行为。