Suppr超能文献

视觉引导到记忆引导力控制转换过程中大脑活动的时空动力学。

Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control.

机构信息

Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

J Neurophysiol. 2012 Sep;108(5):1335-48. doi: 10.1152/jn.00972.2011. Epub 2012 Jun 13.

Abstract

It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control.

摘要

已经证实,前额皮质在记忆引导任务中起作用,而视觉引导任务则部分由额顶网络控制。然而,从视觉引导到记忆引导的力控制的转换性质尚不清楚。因此,本研究检查了在从视觉引导到记忆引导的力控制的转换过程中大脑活动的时空模式。我们在健康个体进行握力任务时测量了 128 通道头皮脑电图 (EEG)。在去除视觉反馈后,事件相关活动的第一个显著变化发生在 300 毫秒时的左中央区域,随后是 400 毫秒时的前额皮质变化。低分辨率电磁断层成像 (LORETA) 用于将最强的活动定位到左腹侧运动前皮质和腹侧前额皮质。第二个实验改变了视觉反馈增益,但不需要记忆。与记忆引导的力控制相反,改变视觉反馈增益不会导致左中央和中线前额区域的早期变化。减少视觉反馈的空间幅度会导致 300 毫秒时中线中央区域的变化,随后是 400 毫秒时枕叶活动的变化。研究结果表明,在从视觉引导到记忆引导的力控制的直接转换后,受试者依赖于涉及左腹侧运动前皮质和腹侧前额皮质的感觉运动记忆过程。

相似文献

1
Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control.
J Neurophysiol. 2012 Sep;108(5):1335-48. doi: 10.1152/jn.00972.2011. Epub 2012 Jun 13.
2
Neural basis for the processes that underlie visually guided and internally guided force control in humans.
J Neurophysiol. 2003 Nov;90(5):3330-40. doi: 10.1152/jn.00394.2003. Epub 2003 Jul 2.
3
Neuronal modifications during visuomotor association learning assessed by electric brain tomography.
Brain Topogr. 2006 Winter;19(1-2):61-75. doi: 10.1007/s10548-006-0013-y.
4
Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error.
J Neurophysiol. 2013 Apr;109(8):2205-15. doi: 10.1152/jn.00969.2012. Epub 2013 Jan 30.
5
Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
J Neurophysiol. 1996 Jan;75(1):454-68. doi: 10.1152/jn.1996.75.1.454.
7
Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
Clin Neurophysiol. 2000 Jul;111(7):1241-57. doi: 10.1016/s1388-2457(00)00313-8.
9
ERPs in an oddball task under vection-inducing visual stimulation.
Exp Brain Res. 2016 Dec;234(12):3473-3482. doi: 10.1007/s00221-016-4748-8. Epub 2016 Aug 3.
10
Selective regions of the visuomotor system are related to gain-induced changes in force error.
J Neurophysiol. 2010 Apr;103(4):2114-23. doi: 10.1152/jn.00920.2009. Epub 2010 Feb 24.

引用本文的文献

4
Entropy in Electroencephalographic Signals Modulates with Force Magnitude During Grasping - A Preliminary Report.
J Mot Behav. 2024;56(6):665-677. doi: 10.1080/00222895.2024.2373241. Epub 2024 Jul 26.
5
Force matching: motor effects that are not reported by the actor.
Exp Brain Res. 2024 Jun;242(6):1439-1453. doi: 10.1007/s00221-024-06829-4. Epub 2024 Apr 23.
6
Unintentional force drifts in the lower extremities.
Exp Brain Res. 2023 May;241(5):1309-1318. doi: 10.1007/s00221-023-06608-7. Epub 2023 Mar 31.
7
Unintentional drifts in performance during one-hand and two-hand finger force production.
Exp Brain Res. 2023 Mar;241(3):699-712. doi: 10.1007/s00221-023-06559-z. Epub 2023 Jan 23.
8
Production and Perception of Intentional and Unintentional Actions.
J Hum Kinet. 2021 Jan 29;76:51-66. doi: 10.2478/hukin-2020-0086. eCollection 2021 Jan.
9
Efference copy in kinesthetic perception: a copy of what is it?
J Neurophysiol. 2021 Apr 1;125(4):1079-1094. doi: 10.1152/jn.00545.2020. Epub 2021 Feb 10.
10
On the origin of finger enslaving: control with referent coordinates and effects of visual feedback.
J Neurophysiol. 2020 Dec 1;124(6):1625-1636. doi: 10.1152/jn.00322.2020. Epub 2020 Sep 30.

本文引用的文献

1
Orbitofrontal contributions to human working memory.
Cereb Cortex. 2011 Apr;21(4):789-95. doi: 10.1093/cercor/bhq153. Epub 2010 Aug 19.
2
Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.
Clin Neurophysiol. 2010 Dec;121(12):2044-64. doi: 10.1016/j.clinph.2010.05.008. Epub 2010 Jun 14.
3
The when and where of spatial storage in memory-guided saccades.
Neuroimage. 2010 Oct 1;52(4):1611-20. doi: 10.1016/j.neuroimage.2010.05.039. Epub 2010 May 21.
4
Selective regions of the visuomotor system are related to gain-induced changes in force error.
J Neurophysiol. 2010 Apr;103(4):2114-23. doi: 10.1152/jn.00920.2009. Epub 2010 Feb 24.
5
The cognitive and neural correlates of tactile memory.
Psychol Bull. 2009 May;135(3):380-406. doi: 10.1037/a0015325.
6
Evaluating the role of prefrontal and parietal cortices in memory-guided response with repetitive transcranial magnetic stimulation.
Neuropsychologia. 2009 Jan;47(2):295-302. doi: 10.1016/j.neuropsychologia.2008.08.026. Epub 2008 Sep 4.
7
Parieto-frontal connectivity during visually guided grasping.
J Neurosci. 2007 Oct 31;27(44):11877-87. doi: 10.1523/JNEUROSCI.3923-07.2007.
8
The role of the preSMA and the rostral cingulate zone in internally selected actions.
Neuroimage. 2007 Oct 1;37(4):1354-61. doi: 10.1016/j.neuroimage.2007.06.018. Epub 2007 Jul 3.
10
Visual angle is the critical variable mediating gain-related effects in manual control.
Exp Brain Res. 2006 Sep;173(4):742-50. doi: 10.1007/s00221-006-0454-2. Epub 2006 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验