Instituto de Tecnología Química, Universidad Politécnica de Valencia, Spain.
Acc Chem Res. 2012 Sep 18;45(9):1558-70. doi: 10.1021/ar300054e. Epub 2012 Jun 14.
Although the carcinogenic potential of ultraviolet radiation is well-known, UV light may interact with DNA by direct absorption or through photosensitization by endogenous or exogenous chromophores. These chromophores can extend the "active" fraction of the solar spectrum to the UVA region and beyond, which means that photosensitizers increase the probability of developing skin cancer upon exposure to sunlight. Therefore researchers would like to understand the mechanisms involved in photosensitized DNA damage both to anticipate possible photobiological risks and to design tailor-made photoprotection strategies. In this context, photosensitized DNA damage can occur through a variety of processes including electron transfer, hydrogen abstraction, triplet-triplet energy transfer, or generation of reactive oxygen species. In this Account, we have chosen benzophenone (BP) as a classical and paradigmatic chromophore to illustrate the different lesions that photosensitization may prompt in nucleosides, in oligonucleotides, or in DNA. Thus, we discuss in detail the accumulated mechanistic evidence of the BP-photosensitized reactions of DNA or its building blocks obtained by our group and others. We also include ketoprofen (KP), a BP-derivative that possesses a chiral center, to highlight the stereodifferentiation in the key photochemical events, revealed through the dynamics of the reactive triplet excited state ((3)KP*). Our results show that irradiation of the BP chromophore in the presence of DNA or its components leads to nucleobase oxidations, cyclobutane pyrimidine dimer formation, single strand breaks, DNA-protein cross-links, or abasic sites. We attribute the manifold photoreactivity of BP to its well established photophysical properties: (i) it absorbs UV light, up to 360 nm; (ii) its intersystem crossing quantum yield (ϕ(ISC)) is almost 1; (iii) the energy of its nπ* lowest triplet excited state (E(T)) is ca. 290 kJ mol(-1); (iv) it produces singlet oxygen ((1)O(2)) with a quantum yield (ϕ(Δ)) of ca. 0.3. For electron transfer and singlet oxygen reactions, we focused on guanine, the nucleobase with the lowest oxidation potential. Among the possible oxidative processes, electron transfer predominates. Conversely, triplet-triplet energy transfer occurs mainly from (3)BP* to thymine, the base with the lowest lying triplet state in DNA. This process results in the formation of cyclobutane pyrimidine dimers, but it also competes with the Paternò-Büchi reaction in nucleobases or nucleosides, giving rise to oxetanes as a result of crossed cycloadditions. Interestingly, we have found significant stereodifferentiation in the quenching of the KP triplet excited state by both 2'-deoxyguanosine and thymidine. Based on these results, this chromophore shows potential as a (chiral) probe for the investigation of electron and triplet energy transport in DNA.
虽然紫外线辐射的致癌潜力是众所周知的,但紫外线可能通过直接吸收或通过内源性或外源性发色团的光致敏作用与 DNA 相互作用。这些发色团可以将太阳光谱的“活性”部分扩展到 UVA 区域及更远的区域,这意味着光致剂会增加在暴露于阳光下时患皮肤癌的可能性。因此,研究人员希望了解光致敏 DNA 损伤的机制,既要预测可能的光生物学风险,又要设计定制的光保护策略。在这种情况下,光致敏 DNA 损伤可以通过多种过程发生,包括电子转移、氢提取、三重态-三重态能量转移或活性氧物种的生成。在本说明中,我们选择了二苯甲酮 (BP) 作为经典和范例发色团,以说明光致敏化可能在核苷、寡核苷酸或 DNA 中引发的不同损伤。因此,我们详细讨论了我们小组和其他小组获得的 BP 光敏化 DNA 或其构建块反应的累积机制证据。我们还包括酮洛芬 (KP),一种具有手性中心的 BP 衍生物,以突出通过反应三重态激发态 ((3)KP*) 的动力学揭示的关键光化学反应中的立体差异。我们的结果表明,在 DNA 或其成分存在的情况下,BP 发色团的辐照会导致碱基氧化、环丁烷嘧啶二聚体形成、单链断裂、DNA-蛋白质交联或无碱基位点。我们将 BP 的多方面光反应归因于其成熟的光物理性质:(i) 它吸收紫外线,直至 360nm;(ii) 其系间窜越量子产率 (ϕ(ISC)) 几乎为 1;(iii) 其 nπ* 最低三重态激发态 (E(T)) 的能量为 ca.290kJmol(-1);(iv) 它以 ca.0.3 的量子产率 (ϕ(Δ)) 产生单线态氧 ((1)O(2))。对于电子转移和单线态氧反应,我们专注于具有最低氧化电位的鸟嘌呤。在可能的氧化过程中,电子转移占主导地位。相反,三重态-三重态能量转移主要发生在 (3)BP* 与胸腺嘧啶之间,胸腺嘧啶是 DNA 中最低三重态的碱基。该过程导致环丁烷嘧啶二聚体的形成,但它也与碱基或核苷中的 Paternò-Büchi 反应竞争,导致由于交叉环加成而形成氧杂环丁烷。有趣的是,我们发现 KP 三重态激发态被 2'-脱氧鸟苷和胸腺嘧啶猝灭时存在显著的立体差异。基于这些结果,这种发色团显示出作为研究 DNA 中电子和三重态能量传输的(手性)探针的潜力。