Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany.
Acc Chem Res. 2013 Sep 17;46(9):2070-9. doi: 10.1021/ar300320p. Epub 2013 Mar 15.
Essential biological processes such as cell motion, signaling,protein synthesis, and pathogen-host interactions rely on multifunctional molecular machines containing supramolecular assemblies, that is, noncovalently assembled protein subunits. Scientists would like to acquire a detailed atomic view of the complete molecular machine to understand its assembly process and functions. Structural biologists have used various approaches to obtain structural information such as X-ray crystallography, solution NMR, and electron microscopy. The inherent insolubility and large size of these multicomponent assemblies restrict the use of solution NMR, and their noncrystallinity and elongated shapes present obstacles to X-ray crystallography studies. Not limited by molecular weight or crystallinity, solid-state NMR (ssNMR) allows for structural investigations of supramolecular assemblies such as helical filaments, cross-β fibrils, or membrane-embedded oligomeric proteins. In this Account, we describe recent progress in the application of ssNMR to the elucidation of atomic structures of supramolecular assemblies. We highlight ssNMR methods to determine the subunit interfaces in symmetric arrangements. Our use of [1-(13)C]- or [2-(13)C]-glucose as a carbon source during bacterial protein expression results in significant (13)C spin dilution that drastically improves the spectral quality and enables us to detect meaningful structural restraints. Moreover, we can unequivocally determine intermolecular restraints using mixed [(1:1)1-(13)C/2-(13)C]-glucose labeled assemblies. We recently illustrated the power of this methodology with the structure determination of the type III secretion system (T3SS) needle. One crucial aspect in elucidating the atomic structure of these large multicomponent complexes is to determine the subunit-subunit interfaces. Notably, we could probe the needle subunit interfaces by collecting (13)C-(13)C intermolecular restraints. In contrast, these interfaces are not accessible via high-resolution cryo-EM. This approach is readily applicable to other supramolecular assemblies containing symmetrically repeating protein subunits, and could be combined with other techniques to get a more complete picture of multicomponent structures. To determine near-atomic structures of assemblies of biological interest, researchers could combine ssNMR data collected at the subunit interfaces with the envelope obtained from cryo-EM and potentially with monomeric subunit crystal structures.
基本的生物过程,如细胞运动、信号转导、蛋白质合成和病原体-宿主相互作用,依赖于包含超分子组装体的多功能分子机器,即非共价组装的蛋白质亚基。科学家们希望获得完整分子机器的详细原子视图,以了解其组装过程和功能。结构生物学家已经使用各种方法来获取结构信息,如 X 射线晶体学、溶液 NMR 和电子显微镜。这些多组分组装体的固有不溶性和大尺寸限制了溶液 NMR 的使用,其非晶态和长形形状对 X 射线晶体学研究构成了障碍。固态 NMR(ssNMR)不受分子量或结晶度的限制,允许对超分子组装体(如螺旋丝、交叉-β 纤维或膜嵌入的寡聚蛋白)进行结构研究。在本报告中,我们描述了 ssNMR 在阐明超分子组装体原子结构方面的最新进展。我们强调了 ssNMR 方法来确定对称排列的亚基界面。我们在细菌蛋白表达过程中使用[1-(13)C]-或[2-(13)C]-葡萄糖作为碳源,导致(13)C 自旋稀释显著提高了光谱质量,并使我们能够检测到有意义的结构约束。此外,我们可以使用混合[(1:1)1-(13)C/2-(13)C]-葡萄糖标记的组装体来明确确定分子间约束。我们最近用 III 型分泌系统(T3SS)针的结构确定说明了这种方法的威力。阐明这些大型多组分复合物的原子结构的一个关键方面是确定亚基-亚基界面。值得注意的是,我们可以通过收集(13)C-(13)C 分子间约束来探测针状亚基界面。相比之下,这些界面无法通过高分辨率冷冻电镜获得。这种方法易于应用于包含对称重复蛋白质亚基的其他超分子组装体,并可以与其他技术相结合,以获得更完整的多组分结构图像。为了确定具有生物学意义的组装体的近原子结构,研究人员可以将在亚基界面收集的 ssNMR 数据与冷冻电镜获得的包络以及潜在的单体亚基晶体结构结合起来。