Department of Anatomy/Pathology, Basic Medical College, Zhengzhou University, Science Road 100, Zhengzhou, Henan, China.
Cell Oncol (Dordr). 2012 Jun;35(3):217-27. doi: 10.1007/s13402-012-0081-9. Epub 2012 Jun 15.
Tumour cells are characterized by aerobic glycolysis, which provides biomass for tumour proliferation and leads to extracellular acidification through efflux of lactate via monocarboxylate transporters (MCTs). Deficient and spasm-prone tumour vasculature causes variable hypoxia, which favours tumour cell survival and metastases. Brain metastases frequently occur in patients with advanced breast cancer.Effective treatment strategies are therefore needed against brain metastasis from breast carcinoma.
In order to identify differences in the capacity for lactate exchange, human T-47D breast cancer cells and human glioblastoma T98G cells were grown under 4 % or 20 % oxygen conditions and examined for MCT1, MCT2 and MCT4 expression on plasma membranes by quantitative post embedding immunogold electron microscopy. Whereas previous studies on MCT expression in tumours have recorded mRNA and protein levels in cell extracts, we examined concentrations of the proteins in the microvillous plasma membrane protrusions specialized for transmembrane transport.
In normoxia, both tumour cell types highly expressed the low affinity transporter MCT4, which is thought to mainly mediate monocarboxylate efflux, while for high affinity transport the breast tumour cells preferentially expressed MCT1 and the brain tumour cells resembled brain neurons in expressing MCT2, rather than MCT1. The expressions of MCT1 and MCT4 were upregulated in hypoxic conditions in both breast and brain tumour cells. The expression of MCT2 also increased in hypoxic breast cancer cells, but decreased in hypoxic brain tumour cells. Quantitative immunoblots showed similar hypoxia induced changes in the protein levels.
The differential expression and regulation of MCTs in the surface membranes of hypoxic and normoxic tumour cells of different types provide a foundation for innovation in tumour therapy through the selective targeting of MCTs. Selective inhibition of various MCTs could be an efficient way to quench an important energy source in both original breast tumour and metastatic cancer tissue in the brain.
肿瘤细胞的特征是有氧糖酵解,这为肿瘤增殖提供了生物质,并通过单羧酸转运蛋白(MCTs)将乳酸外排导致细胞外酸化。肿瘤血管供应不足且易痉挛导致缺氧程度不同,这有利于肿瘤细胞的存活和转移。晚期乳腺癌患者常发生脑转移。因此,需要针对乳腺癌脑转移制定有效的治疗策略。
为了确定乳酸交换能力的差异,将人 T-47D 乳腺癌细胞和人胶质母细胞瘤 T98G 细胞在 4%或 20%氧条件下生长,并通过定量后嵌入免疫金电子显微镜检查质膜上 MCT1、MCT2 和 MCT4 的表达。而之前关于肿瘤中 MCT 表达的研究记录了细胞提取物中的 mRNA 和蛋白水平,我们则检查了专门用于跨膜转运的微绒毛质膜突起中蛋白质的浓度。
在常氧条件下,两种肿瘤细胞类型都高度表达低亲和力转运蛋白 MCT4,这被认为主要介导单羧酸外排,而对于高亲和力转运,乳腺癌细胞优先表达 MCT1,脑肿瘤细胞在表达 MCT2 方面与脑神经元相似,而不是 MCT1。在两种乳腺癌和脑肿瘤细胞中,低氧条件下 MCT1 和 MCT4 的表达都上调。低氧乳腺癌细胞中 MCT2 的表达也增加,但低氧脑肿瘤细胞中 MCT2 的表达减少。定量免疫印迹显示蛋白水平也存在类似的缺氧诱导变化。
不同类型的缺氧和常氧肿瘤细胞表面膜中 MCTs 的差异表达和调节为通过选择性靶向 MCTs 进行肿瘤治疗的创新提供了基础。选择性抑制各种 MCT 可能是一种有效的方法,可以抑制原发乳腺癌和脑转移癌组织中的重要能量来源。