Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy.
Mol Metab. 2020 Mar;33:48-66. doi: 10.1016/j.molmet.2019.07.006. Epub 2019 Jul 27.
Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway.
Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81.
Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT and MCT) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments.
肿瘤是高度可塑性的代谢实体,由癌症细胞和宿主细胞组成,可采用不同的代谢表型。对于能量产生,癌细胞可以使用 4 种主要燃料,这些燃料通过 5 种不同的代谢途径穿梭。葡萄糖为糖酵解提供燃料,糖酵解可以与三羧酸 (TCA) 循环和氧化磷酸化 (OXPHOS) 在氧化癌细胞中偶联,或者与增殖和缺氧癌细胞中的乳酸发酵偶联。脂肪为脂肪分解提供燃料,谷氨酰胺为谷氨酰胺分解提供燃料,乳酸为乳酸的氧化途径提供燃料,所有这些都与 TCA 循环和 OXPHOS 偶联以产生能量。本综述重点介绍了后者的代谢途径。
乳酸主要由肿瘤中的糖酵解细胞产生,最近才被认为是氧化癌细胞的主要燃料和信号分子。其跨膜交换由单羧酸转运蛋白 MCT1-4 控制。本综述总结了目前关于 MCT 在癌症中的结构、调节和功能的知识,特别关注乳酸代谢、乳酸诱导的血管生成和 MCT 依赖性癌症转移。它还描述了通过细胞表面乳酸受体 GPR81 进行的乳酸信号转导。
乳酸和 MCT,特别是 MCT1 和 MCT4,是肿瘤侵袭性的重要贡献者。对 MCT 缺陷型 (MCT 和 MCT) 动物和 (MCT 突变型) 人类的分析表明,它们是可药物治疗的,MCT1 抑制剂处于先进的开发阶段,MCT4 抑制剂仍处于发现阶段。使用正电子发射断层扫描 (PET) 的乳酸示踪剂无创性地分析乳酸通量,将有助于进一步确定对治疗有反应的患者。