Suppr超能文献

结构洞察铜绿假单胞菌 VI 型毒力效应因子 Tse1 溶菌和自我保护机制。

Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms.

机构信息

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 10010, China.

出版信息

J Biol Chem. 2012 Aug 3;287(32):26911-20. doi: 10.1074/jbc.M112.368043. Epub 2012 Jun 14.

Abstract

Recently, it was identified that Pseudomonas aeruginosa competes with rival cells to gain a growth advantage using a novel mechanism that includes two interrelated processes as follows: employing type VI secretion system (T6SS) virulence effectors to lyse other bacteria, and at the same time producing specialized immunity proteins to inactivate their cognate effectors for self-protection against mutual toxicity. To explore the structural basis of these processes in the context of functional performance, the crystal structures of the T6SS virulence effector Tse1 and its complex with the corresponding immunity protein Tsi1 were determined, which, in association with mutagenesis and Biacore analyses, provided a molecular platform to resolve the relevant structural questions. The results indicated that Tse1 features a papain-like structure and conserved catalytic site with distinct substrate-binding sites to hydrolyze its murein peptide substrate. The immunity protein Tsi1 interacts with Tse1 via a unique interactive recognition mode to shield Tse1 from its physiological substrate. These findings reveal both the structural mechanisms for bacteriolysis and the self-protection against the T6SS effector Tse1. These mechanisms are significant not only by contributing to a novel understanding of niche competition among bacteria but also in providing a structural basis for antibacterial agent design and the development of new strategies to fight P. aeruginosa.

摘要

最近,研究人员发现铜绿假单胞菌利用一种新的机制与竞争细胞竞争生长优势,该机制包括以下两个相互关联的过程:利用型 VI 分泌系统 (T6SS) 毒力效应器裂解其他细菌,同时产生专门的免疫蛋白来使其同源效应物失活,从而自我保护免受相互毒性的影响。为了在功能表现的背景下探索这些过程的结构基础,确定了 T6SS 毒力效应物 Tse1 及其与相应免疫蛋白 Tsi1 的复合物的晶体结构,结合诱变和 Biacore 分析,为解决相关结构问题提供了分子平台。结果表明,Tse1 具有木瓜蛋白酶样结构和保守的催化位点,具有独特的底物结合位点,可水解其肽聚糖底物。免疫蛋白 Tsi1 通过独特的相互作用识别模式与 Tse1 相互作用,使 Tse1 免受其生理底物的影响。这些发现揭示了细菌裂解和 T6SS 效应物 Tse1 自我保护的结构机制。这些机制不仅有助于对细菌生态位竞争的新理解,而且为抗菌剂设计和对抗铜绿假单胞菌的新策略提供了结构基础。

相似文献

1
Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms.
J Biol Chem. 2012 Aug 3;287(32):26911-20. doi: 10.1074/jbc.M112.368043. Epub 2012 Jun 14.
3
Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa.
PLoS One. 2012;7(7):e40453. doi: 10.1371/journal.pone.0040453. Epub 2012 Jul 6.
4
Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa.
FEBS Lett. 2012 Sep 21;586(19):3193-9. doi: 10.1016/j.febslet.2012.06.036. Epub 2012 Jun 29.
5
Complex structure of type VI peptidoglycan muramidase effector and a cognate immunity protein.
Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):1889-900. doi: 10.1107/S090744491301576X. Epub 2013 Sep 20.
6
The structural basis of the Tle4-Tli4 complex reveals the self-protection mechanism of H2-T6SS in Pseudomonas aeruginosa.
Acta Crystallogr D Biol Crystallogr. 2014 Dec 1;70(Pt 12):3233-43. doi: 10.1107/S1399004714023967. Epub 2014 Nov 22.
7
Structural basis for type VI secretion effector recognition by a cognate immunity protein.
PLoS Pathog. 2012;8(4):e1002613. doi: 10.1371/journal.ppat.1002613. Epub 2012 Apr 12.
8
Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system.
Cell Rep. 2012 Jun 28;1(6):656-64. doi: 10.1016/j.celrep.2012.05.016. Epub 2012 May 31.
9
Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism.
Acta Crystallogr F Struct Biol Commun. 2020 May 1;76(Pt 5):222-227. doi: 10.1107/S2053230X2000566X. Epub 2020 Apr 28.
10
Type VI secretion delivers bacteriolytic effectors to target cells.
Nature. 2011 Jul 20;475(7356):343-7. doi: 10.1038/nature10244.

引用本文的文献

1
Two cysteines control Tse1 secretion by H1-T6SS in Pseudomonas aeruginosa.
Protein Sci. 2025 Aug;34(8):e70226. doi: 10.1002/pro.70226.
2
Xanthomonas immunity proteins protect against the cis-toxic effects of their cognate T4SS effectors.
EMBO Rep. 2024 Mar;25(3):1436-1452. doi: 10.1038/s44319-024-00060-6. Epub 2024 Feb 8.
3
Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin.
PLoS Pathog. 2023 Jun 26;19(6):e1011454. doi: 10.1371/journal.ppat.1011454. eCollection 2023 Jun.
4
Identification and classification of papain-like cysteine proteinases.
J Biol Chem. 2023 Jun;299(6):104801. doi: 10.1016/j.jbc.2023.104801. Epub 2023 May 8.
5
Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin.
bioRxiv. 2023 May 2:2023.01.20.524922. doi: 10.1101/2023.01.20.524922.
6
Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions.
Cell Chem Biol. 2023 May 18;30(5):436-456. doi: 10.1016/j.chembiol.2022.11.001. Epub 2022 Nov 22.
8
Formylglycine-Generating Enzyme-Like Proteins Constitute a Novel Family of Widespread Type VI Secretion System Immunity Proteins.
J Bacteriol. 2021 Oct 12;203(21):e0028121. doi: 10.1128/JB.00281-21. Epub 2021 Aug 16.
9
Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors.
EMBO Rep. 2021 Jun 4;22(6):e51857. doi: 10.15252/embr.202051857. Epub 2021 Mar 30.
10
Manipulating the type VI secretion system spike to shuttle passenger proteins.
PLoS One. 2020 Feb 26;15(2):e0228941. doi: 10.1371/journal.pone.0228941. eCollection 2020.

本文引用的文献

1
A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach.
Cell Host Microbe. 2012 May 17;11(5):538-49. doi: 10.1016/j.chom.2012.04.007.
2
Peptidoglycan remodeling in Mycobacterium tuberculosis: comparison of structures and catalytic activities of RipA and RipB.
J Mol Biol. 2011 Oct 14;413(1):247-60. doi: 10.1016/j.jmb.2011.08.014. Epub 2011 Aug 16.
3
Type VI secretion delivers bacteriolytic effectors to target cells.
Nature. 2011 Jul 20;475(7356):343-7. doi: 10.1038/nature10244.
4
What is type VI secretion doing in all those bugs?
Trends Microbiol. 2010 Dec;18(12):531-7. doi: 10.1016/j.tim.2010.09.001. Epub 2010 Oct 18.
5
Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Oct 1;66(Pt 10):1354-64. doi: 10.1107/S1744309110021214. Epub 2010 Jul 27.
6
Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.
PLoS Pathog. 2010 Aug 26;6(8):e1001068. doi: 10.1371/journal.ppat.1001068.
8
Type VI secretion: not just for pathogenesis anymore.
Cell Host Microbe. 2010 Jul 22;8(1):2-6. doi: 10.1016/j.chom.2010.06.012.
9
Dali server: conservation mapping in 3D.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9. doi: 10.1093/nar/gkq366. Epub 2010 May 10.
10
A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria.
Cell Host Microbe. 2010 Jan 21;7(1):25-37. doi: 10.1016/j.chom.2009.12.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验