Suppr超能文献

病例对照研究中肺癌职业风险的多重比较的层次回归分析。

Hierarchical regression for multiple comparisons in a case-control study of occupational risks for lung cancer.

机构信息

Department of Medical Sciences, Cancer Epidemiology Unit, CeRMS and CPO-Piemonte, University of Turin, Turin, Italy.

出版信息

PLoS One. 2012;7(6):e38944. doi: 10.1371/journal.pone.0038944. Epub 2012 Jun 11.

Abstract

BACKGROUND

Occupational studies often involve multiple comparisons and therefore suffer from false positive findings. Semi-Bayes adjustment methods have sometimes been used to address this issue. Hierarchical regression is a more general approach, including Semi-Bayes adjustment as a special case, that aims at improving the validity of standard maximum-likelihood estimates in the presence of multiple comparisons by incorporating similarities between the exposures of interest in a second-stage model.

METHODOLOGY/PRINCIPAL FINDINGS: We re-analysed data from an occupational case-control study of lung cancer, applying hierarchical regression. In the second-stage model, we included the exposure to three known lung carcinogens (asbestos, chromium and silica) for each occupation, under the assumption that occupations entailing similar carcinogenic exposures are associated with similar risks of lung cancer. Hierarchical regression estimates had smaller confidence intervals than maximum-likelihood estimates. The shrinkage toward the null was stronger for extreme, less stable estimates (e.g., "specialised farmers": maximum-likelihood OR: 3.44, 95%CI 0.90-13.17; hierarchical regression OR: 1.53, 95%CI 0.63-3.68). Unlike Semi-Bayes adjustment toward the global mean, hierarchical regression did not shrink all the ORs towards the null (e.g., "Metal smelting, converting and refining furnacemen": maximum-likelihood OR: 1.07, Semi-Bayes OR: 1.06, hierarchical regression OR: 1.26).

CONCLUSIONS/SIGNIFICANCE: Hierarchical regression could be a valuable tool in occupational studies in which disease risk is estimated for a large amount of occupations when we have information available on the key carcinogenic exposures involved in each occupation. With the constant progress in exposure assessment methods in occupational settings and the availability of Job Exposure Matrices, it should become easier to apply this approach.

摘要

背景

职业研究通常涉及多个比较,因此容易出现假阳性发现。半贝叶斯调整方法有时被用于解决这个问题。层次回归是一种更通用的方法,包括半贝叶斯调整作为一种特殊情况,旨在通过在第二阶段模型中纳入感兴趣的暴露之间的相似性,来提高存在多个比较时标准最大似然估计的有效性。

方法/主要发现:我们重新分析了一项肺癌职业病例对照研究的数据,应用了层次回归。在第二阶段模型中,我们假设涉及相似致癌暴露的职业与肺癌风险相似,为每种职业纳入了三种已知的肺癌致癌物(石棉、铬和二氧化硅)的暴露。层次回归估计的置信区间比最大似然估计的置信区间小。对于极端、不太稳定的估计值(例如,“专业农民”:最大似然比 OR:3.44,95%CI 0.90-13.17;层次回归比 OR:1.53,95%CI 0.63-3.68),向零值的收缩更强。与半贝叶斯向全局均值的收缩不同,层次回归并没有将所有的 OR 都向零值收缩(例如,“金属冶炼、转化和精炼炉工”:最大似然比 OR:1.07,半贝叶斯比 OR:1.06,层次回归比 OR:1.26)。

结论/意义:在职业研究中,如果我们有关于每种职业涉及的关键致癌暴露的信息,并且需要为大量职业估计疾病风险时,层次回归可能是一种有价值的工具。随着职业环境中暴露评估方法的不断进步和职业暴露矩阵的可用性,应用这种方法应该变得更加容易。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f2/3372490/16e1b03a9f26/pone.0038944.g001.jpg

相似文献

7
Occupational respiratory cancer in Korea.韩国职业性呼吸道癌。
J Korean Med Sci. 2010 Dec;25(Suppl):S94-8. doi: 10.3346/jkms.2010.25.S.S94. Epub 2010 Dec 15.

本文引用的文献

4
Lung cancer risk in painters: a meta-analysis.画家肺癌风险:荟萃分析。
Environ Health Perspect. 2010 Mar;118(3):303-12. doi: 10.1289/ehp.0901402. Epub 2009 Oct 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验