Suppr超能文献

利用不同环境下的高通量测量开发紧凑型转录效应器。

Development of compact transcriptional effectors using high-throughput measurements in diverse contexts.

作者信息

Tycko Josh, Van Mike V, DelRosso Nicole, Ye Hanrong, Yao David, Valbuena Raeline, Vaughan-Jackson Alun, Xu Xiaoshu, Ludwig Connor, Spees Kaitlyn, Liu Katherine, Gu Mingxin, Khare Venya, Mukund Adi Xiyal, Suzuki Peter H, Arana Sophia, Zhang Catherine, Du Peter P, Ornstein Thea S, Hess Gaelen T, Kamber Roarke A, Qi Lei S, Khalil Ahmad S, Bintu Lacramioara, Bassik Michael C

机构信息

Department of Genetics, Stanford University, Stanford, CA, USA.

Department of Neurobiology, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Biotechnol. 2024 Nov 1. doi: 10.1038/s41587-024-02442-6.

Abstract

Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors. We find that many effectors depend on target and DBD contexts, such as HLH domains that can act as either activators or repressors. To enable efficient perturbations, we select context-robust domains, including ZNF705 KRAB, that improve CRISPRi tools to silence promoters and enhancers. We engineer a compact human activator called NFZ, by combining NCOA3, FOXO3 and ZNF473 domains, which enables efficient CRISPRa with better viral delivery and inducible control of chimeric antigen receptor T cells.

摘要

转录效应物是已知可激活或抑制基因表达的蛋白质结构域;然而,目前缺乏对哪些效应结构域在基因组、细胞类型和DNA结合结构域(DBD)背景下调节转录的系统理解。在这里,我们开发了dCas9介导的高通量招募(HT-recruit)方法,这是一种用于在内源靶基因上定量效应物功能的汇集筛选方法,并针对包含5092个核蛋白Pfam结构域的文库在不同背景下测试效应物功能。我们还使用一个更大的覆盖染色质调节因子和转录因子的文库,绘制了从未注释蛋白质区域提取的效应物的背景依赖性。我们发现许多效应物依赖于靶标和DBD背景,例如HLH结构域既可以作为激活剂也可以作为抑制剂。为了实现有效的干扰,我们选择了背景稳健的结构域,包括ZNF705 KRAB,它改进了CRISPRi工具以沉默启动子和增强子。我们通过组合NCOA3、FOXO3和ZNF473结构域设计了一种紧凑的人类激活剂NFZ,它能够实现高效的CRISPRa,具有更好的病毒递送能力,并可诱导控制嵌合抗原受体T细胞。

相似文献

2
High-Throughput Discovery and Characterization of Human Transcriptional Effectors.
Cell. 2020 Dec 23;183(7):2020-2035.e16. doi: 10.1016/j.cell.2020.11.024. Epub 2020 Dec 15.
4
Versatile regulation of effectors by novel orthologous regulators in the genus.
mBio. 2025 Jul 9;16(7):e0126825. doi: 10.1128/mbio.01268-25. Epub 2025 May 30.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
8
Transfusion thresholds for guiding red blood cell transfusion.
Cochrane Database Syst Rev. 2021 Dec 21;12(12):CD002042. doi: 10.1002/14651858.CD002042.pub5.
9
The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780.
10
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

引用本文的文献

1
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
2
Cytotoxicity of activator expression in CRISPR-based transcriptional activation systems.
Nat Commun. 2025 Aug 29;16(1):8071. doi: 10.1038/s41467-025-63570-4.
3
Programmable epigenome editing by transient delivery of CRISPR epigenome editor ribonucleoproteins.
Nat Commun. 2025 Aug 26;16(1):7948. doi: 10.1038/s41467-025-63167-x.
4
Utilizing small molecules to probe and harness the proteome by pooled protein tagging with ligandable domains.
Front Pharmacol. 2025 Jun 23;16:1593844. doi: 10.3389/fphar.2025.1593844. eCollection 2025.
5
Perspective on recent developments and challenges in regulatory and systems genomics.
Bioinform Adv. 2025 May 9;5(1):vbaf106. doi: 10.1093/bioadv/vbaf106. eCollection 2025.
6
Machine-guided dual-objective protein engineering for deimmunization and therapeutic functions.
Cell Syst. 2025 Jul 16;16(7):101299. doi: 10.1016/j.cels.2025.101299. Epub 2025 Jun 3.
7
Powering new therapeutics with precision mitochondrial editing.
Nat Biotechnol. 2025 Jun;43(6):831-832. doi: 10.1038/s41587-025-02693-x.
8
Post-transcriptional modular synthetic receptors.
Nat Chem Biol. 2025 Mar 28. doi: 10.1038/s41589-025-01872-w.
9
PROTACs coupled with oligonucleotides to tackle the undruggable.
Bioanalysis. 2025 Feb;17(4):261-276. doi: 10.1080/17576180.2025.2459528. Epub 2025 Feb 3.
10
Versatile roles of disordered transcription factor effector domains in transcriptional regulation.
FEBS J. 2025 Jun;292(12):3014-3033. doi: 10.1111/febs.17424. Epub 2025 Jan 30.

本文引用的文献

1
Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations.
Nat Biotechnol. 2025 Mar;43(3):369-383. doi: 10.1038/s41587-024-02224-0. Epub 2024 May 17.
2
Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications.
Nat Genet. 2024 Jun;56(6):1168-1180. doi: 10.1038/s41588-024-01706-w. Epub 2024 May 9.
3
Chromatin context-dependent regulation and epigenetic manipulation of prime editing.
Cell. 2024 May 9;187(10):2411-2427.e25. doi: 10.1016/j.cell.2024.03.020. Epub 2024 Apr 11.
4
Synthetic transcription factor engineering for cell and gene therapy.
Trends Biotechnol. 2024 Apr;42(4):449-463. doi: 10.1016/j.tibtech.2023.09.010. Epub 2023 Oct 19.
5
Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control.
Nat Methods. 2023 Nov;20(11):1716-1728. doi: 10.1038/s41592-023-02036-1. Epub 2023 Oct 9.
6
Optimization of Cas12a for multiplexed genome-scale transcriptional activation.
Cell Genom. 2023 Sep 1;3(9):100387. doi: 10.1016/j.xgen.2023.100387. eCollection 2023 Sep 13.
7
High-throughput functional characterization of combinations of transcriptional activators and repressors.
Cell Syst. 2023 Sep 20;14(9):746-763.e5. doi: 10.1016/j.cels.2023.07.001. Epub 2023 Aug 4.
8
Widespread regulatory specificities between transcriptional co-repressors and enhancers in .
Science. 2023 Jul 14;381(6654):198-204. doi: 10.1126/science.adf6149. Epub 2023 Jul 13.
9
High-throughput discovery and characterization of viral transcriptional effectors in human cells.
Cell Syst. 2023 Jun 21;14(6):482-500.e8. doi: 10.1016/j.cels.2023.05.008.
10
Large-scale mapping and mutagenesis of human transcriptional effector domains.
Nature. 2023 Apr;616(7956):365-372. doi: 10.1038/s41586-023-05906-y. Epub 2023 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验