Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Free Radic Biol Med. 2012 Aug 15;53(4):951-61. doi: 10.1016/j.freeradbiomed.2012.06.003. Epub 2012 Jun 15.
Tissues are exposed to exogenous and endogenous nitrogen dioxide ((·)NO(2)), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas-phase (·)NO(2) exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to ()NO(2) covered by +/- DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low[DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with (·)NO(2) compared to ascorbate, assessed via (·)NO(2) reactive absorption and aqueous-phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk-phase conditions, and inhibited 3-NT generated by active myeloperoxidase "bound" to RCM. Per the above and kinetic analyses suggesting preferential DFO versus (·)NO(2) reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents (·)NO(2) addition, and thus nitration, and potentially influences biochemical functionalities.
组织会暴露于外源性和内源性的二氧化氮((·)NO(2))中,而后者是蛋白质酪氨酸硝化的末端剂。除了铁螯合作用之外,羟肟酸(HA)去铁胺(DFO)还具有多种功能,包括硝化抑制作用。为了研究 DFO 影响 3-硝基酪氨酸(3-NT)形成的机制,我们利用气相(·)NO(2)暴露,限制其他反应性物质的引入,并利用肺表面模型,其中红细胞膜(RCM)在定义的水膜下固定。当 RCM 暴露于被(±)DFO 覆盖的 (·)NO(2)中时:(i)DFO 比其他 HA 和非 HA 螯合剂更有效地抑制 3-NT 的形成;(ii)3-NT 的抑制作用在非常低的[DFO]浓度下持续很长时间;(iii)3-NT 的形成是铁非依赖性的,但抑制作用需要 DFO 的存在。与抗坏血酸相比,DFO 与(·)NO(2)的反应性较差,通过(·)NO(2)的反应性吸收和水相氧化速率来评估,但在低得多的浓度下就可以限制 3-NT 的形成。DFO 还在水相整体条件下抑制硝化作用,并抑制与 RCM 结合的活性髓过氧化物酶产生的 3-NT。根据上述结果以及动力学分析表明,DFO 优先与膜内的(·)NO(2)反应,我们得出结论,DFO 主要通过容易修复酪氨酸自由基中间体来抑制 3-NT 的形成,从而阻止(·)NO(2)的加成,进而阻止硝化作用,并可能影响生化功能。