Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, Intramural Research Program, NIMH, Bethesda, MD 20877, USA.
Am J Psychiatry. 2012 Jul;169(7):725-34. doi: 10.1176/appi.ajp.2012.11081214.
Antidopaminergic drugs bind to hERG1 potassium channels encoded by the gene KCNH2, which accounts for the side effect of QT interval prolongation. KCNH2 has also been associated with schizophrenia risk, and risk alleles predict increased expression of a brain-selective isoform, KCNH2 3.1, that has unique physiological properties. The authors assessed whether genetic variation associated with KCNH2 3.1 expression influences the therapeutic effects of antipsychotic drugs.
The authors performed a pharmacogenetic analysis of antipsychotic treatment response in patients with schizophrenia using data from two independent studies: a National Institute of Mental Health (NIMH) double-blind, placebo-controlled inpatient crossover trial (N=54) and the multicenter outpatient Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) study (N=364). The KCNH2 genotype that was previously associated with increased expression of KCNH2 3.1 in the brain was treated as a predictor variable. Treatment-associated changes in symptoms were evaluated in both groups with the Positive and Negative Syndrome Scale. The authors also analyzed time to discontinuation in the olanzapine arm of the CATIE study.
In the NIMH study, individuals who were homozygous for the KCNH2 3.1 increased expression-associated T allele of rs1036145 showed significant improvement in positive symptoms, general psychopathology, and thought disturbance, while patients with other genotypes showed little change. In the CATIE study, analogous significant genotypic effects were observed. Moreover, individuals who were homozygous for the T allele at rs1036145 were one-fifth as likely to discontinue olanzapine.
These consistent findings in two markedly different treatment studies support the hypothesis that hERG1-mediated effects of antipsychotics may not be limited to their potential cardiovascular side effects but may also involve therapeutic actions related to the brainspecific 3.1 isoform of KCNH2.
抗多巴胺药物与 hERG1 钾通道结合,该通道由基因 KCNH2 编码,这是导致 QT 间期延长的副作用的原因。KCNH2 也与精神分裂症风险相关,风险等位基因预测大脑选择性同工型 KCNH2 3.1 的表达增加,该同工型具有独特的生理特性。作者评估了与 KCNH2 3.1 表达相关的遗传变异是否会影响抗精神病药物的治疗效果。
作者使用来自两个独立研究的精神分裂症患者抗精神病治疗反应的遗传药理学分析数据:美国国立卫生研究院(NIMH)双盲、安慰剂对照住院交叉试验(N=54)和多中心门诊临床抗精神病药物干预有效性(CATIE)研究(N=364)。以前与大脑中 KCNH2 3.1 表达增加相关的 KCNH2 基因型被视为预测变量。两组均采用阳性和阴性症状量表评估治疗相关的症状变化。作者还分析了 CATIE 研究中奥氮平组的停药时间。
在 NIMH 研究中,rs1036145 中与 KCNH2 3.1 表达增加相关的 T 等位基因纯合的个体在阳性症状、一般精神病学和思维障碍方面有显著改善,而其他基因型的患者几乎没有变化。在 CATIE 研究中,也观察到类似的显著基因型效应。此外,rs1036145 中的 T 等位基因纯合的个体停止使用奥氮平的可能性降低五分之一。
这两个明显不同的治疗研究中的一致发现支持了这样的假设,即抗精神病药物的 hERG1 介导的作用不仅限于其潜在的心血管副作用,还可能涉及与大脑特异性 3.1 同工型 KCNH2 相关的治疗作用。