Santiago-Cordoba Miguel A, Cetinkaya Murat, Boriskina Svetlana V, Vollmer Frank, Demirel Melik C
Materials Research Institute, 212 EES Bldg, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
J Biophotonics. 2012 Aug;5(8-9):629-38. doi: 10.1002/jbio.201200040. Epub 2012 Jun 18.
Microcavity and whispering gallery mode (WGM) biosensors derive their sensitivity from monitoring frequency shifts induced by protein binding at sites of highly confined field intensities, where field strengths can be further amplified by excitation of plasmon resonances in nanoparticle layers. Here, we propose a mechanism based on optical trapping of a protein at the site of plasmonic field enhancements for achieving ultra sensitive detection in only microliter-scale sample volumes, and in real-time. We demonstrate femto-Molar sensitivity corresponding to a few 1000 s of macromolecules. Simulations based on Mie theory agree well with the optical trapping concept at plasmonic 'hotspots' locations.
微腔和回音壁模式(WGM)生物传感器的灵敏度源于监测蛋白质在高受限场强部位结合所引起的频率变化,在这些部位,场强可通过纳米颗粒层中等离激元共振的激发而进一步放大。在此,我们提出一种基于在等离激元场增强部位对蛋白质进行光学捕获的机制,以仅在微升规模的样品体积中实现超灵敏检测,并实时进行检测。我们展示了飞摩尔灵敏度,对应于几千个大分子。基于米氏理论的模拟结果与等离激元“热点”位置处的光学捕获概念高度吻合。