Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Chembiochem. 2012 Jul 9;13(10):1465-73. doi: 10.1002/cbic.201200244. Epub 2012 Jun 18.
Directed evolution of the monooxygenase P450-BM3 utilizing iterative saturation mutagenesis at and near the binding site enables a high degree of both regio- and enantioselectivity in the oxidative hydroxylation of cyclohexene-1-carboxylic acid methyl ester. Wild-type P450-BM3 is 84% regioselective for the allylic 3-position with 34% enantioselectivity in favor of the R alcohol. Mutants enabling R selectivity (>95% ee) or S selectivity (>95% ee) were evolved, while reducing other oxidation products and thus maximizing regioselectivity to >93%. Control of the substrate-to-enzyme ratio is necessary for obtaining optimal and reproducible enantioselectivities, an observation which is important in future protein engineering of these mono-oxygenases. An E. coli strain capable of NADPH regeneration was also engineered, simplifying directed evolution of P450 enzymes in general. These synthetic results set the stage for subsequent stereoselective and stereospecific chemical transformations to form more complex compounds, thereby illustrating the viability of combining genetically altered enzymes as catalysts in organic chemistry with traditional chemical methods.
利用结合部位和临近结合部位的迭代饱和突变,定向进化单加氧酶 P450-BM3,可使环己烯-1-羧酸甲酯的氧化羟化具有高度的区域和对映选择性。野生型 P450-BM3 对烯丙位 3-位的区域选择性为 84%,对 R 醇的对映选择性为 34%。进化出了能够实现 R 选择性(>95%ee)或 S 选择性(>95%ee)的突变体,同时减少了其他氧化产物,从而使区域选择性最大化至>93%。控制底物与酶的比例对于获得最佳和可重复的对映选择性是必要的,这一观察结果对于这些单加氧酶的未来蛋白质工程非常重要。还对能够进行 NADPH 再生的大肠杆菌菌株进行了工程改造,从而简化了一般的 P450 酶的定向进化。这些合成结果为随后的立体选择性和立体特异性化学转化形成更复杂的化合物奠定了基础,从而说明了将遗传修饰的酶作为催化剂与传统化学方法结合用于有机化学的可行性。