Suppr超能文献

石墨烯-等离子体系统的巨大光响应。

Giant optical response from graphene--plasmonic system.

机构信息

Department of Materials Science and Engineering and California Nano Systems Institute, University of California Los Angeles, Los Angeles, California 90095-1595, United States.

出版信息

ACS Nano. 2012 Jul 24;6(7):6244-9. doi: 10.1021/nn301694m. Epub 2012 Jun 27.

Abstract

The unique properties of graphene when coupled to plasmonic surfaces render a very interesting physical system with intriguing responses to stimuli such as photons. It promises exciting application potentials such as photodetectors as well as biosensing. With its semimetallic band structure, graphene in the vicinity of metallic nanostructures is expected to lead to non-negligible perturbation of the local distribution of electromagnetic field intensity, an interesting plasmonic resonance process that has not been studied to a sufficient extent. Efforts to enhance optoelectronic responses of graphene using plasmonic structures have been demonstrated with rather modest Raman enhancement factors of less than 100. Here, we examine a novel cooperative graphene-Au nanopyramid system with a remarkable graphene Raman enhancement factor of up to 10(7). Experimental evidence including polarization-dependent Raman spectroscopy and scanning electron microscopy points to a new origin of a drastically enhanced D-band from sharp folds of graphene near the extremities of the nanostructure that is free of broken carbon bonds. These observations indicate a new approach for obtaining detailed structural and vibrational information on graphene from an extremely localized region. The new physical origin of the D-band offers a realistic possibility of defining active devices in the form of, for example, graphene nanoribbons by engineered graphene folds (also known as wrinkles) to realize edge-disorder-free transport. Furthermore, the addition of graphene made it possible to tailor the biochemical properties of plasmonic surfaces from conventional metallic ones to biocompatible carbon surfaces.

摘要

当与等离子体表面结合时,石墨烯的独特性质呈现出一个非常有趣的物理系统,对光子等刺激有有趣的响应。它有望实现令人兴奋的应用潜力,如光电探测器和生物传感。由于其半金属能带结构,在金属纳米结构附近的石墨烯预计会导致电磁场强度的局部分布发生不可忽略的微扰,这是一个有趣的等离子体共振过程,但目前还没有进行充分的研究。已经有研究通过等离子体结构来提高石墨烯的光电响应,其拉曼增强因子仅略高于 100。在这里,我们研究了一种新型的协同石墨烯-金纳米金字塔系统,其石墨烯拉曼增强因子高达 10(7)。包括偏振相关拉曼光谱和扫描电子显微镜在内的实验证据表明,源于纳米结构末端石墨烯的急剧增强 D 带具有新的起源,其来自于无断裂碳键的石墨烯尖锐褶皱。这些观察结果表明,从极其局部的区域获取石墨烯的详细结构和振动信息有了一种新方法。D 带的新物理起源为以石墨烯纳米带的形式定义有源器件提供了现实的可能性,例如通过工程化的石墨烯褶皱(也称为皱纹)来实现无边缘无序的传输。此外,添加石墨烯使得有可能将等离子体表面的生化特性从传统的金属特性调整为生物兼容的碳表面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验