Laboratoire d'Ethologie et Cognition Comparées, Université Paris Ouest Nanterre La Défense, 200 avenue de la République, 92000 Nanterre, France.
J Acoust Soc Am. 2011 Feb;129(2):1089-99. doi: 10.1121/1.3531953.
A crucial step in the understanding of vocal behavior of birds is to be able to classify calls in the repertoire into meaningful types. Methods developed to this aim are limited either because of human subjectivity or because of methodological issues. The present study investigated whether a feature generation system could categorize vocalizations of a bird species automatically and effectively. This procedure was applied to vocalizations of African gray parrots, known for their capacity to reproduce almost any sound of their environment. Outcomes of the feature generation approach agreed well with a much more labor-intensive process of a human expert classifying based on spectrographic representation, while clearly out-performing other automated methods. The method brings significant improvements in precision over commonly used bioacoustical analyses. As such, the method enlarges the scope of automated, acoustics-based sound classification.
鸟类发声行为理解的关键步骤是能够将曲目中的叫声分类为有意义的类型。为此目的开发的方法要么受到人类主观性的限制,要么受到方法学问题的限制。本研究调查了特征生成系统是否可以自动有效地对鸟类的叫声进行分类。该程序应用于非洲灰鹦鹉的叫声,众所周知,它们能够再现其环境中的几乎任何声音。特征生成方法的结果与基于声谱表示的人类专家分类的劳动强度更大的过程非常吻合,同时明显优于其他自动化方法。该方法在精度上比常用的生物声学分析有显著提高。因此,该方法扩大了基于声学的自动声音分类的范围。