School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
Nat Chem. 2012 May 6;4(7):547-51. doi: 10.1038/nchem.1343.
Light-driven molecular motors convert light into mechanical energy through excited-state reactions. Unidirectional rotary molecular motors based on chiral overcrowded alkenes operate through consecutive photochemical and thermal steps. The thermal (helix inverting) step has been optimized successfully through variations in molecular structure, but much less is known about the photochemical step, which provides power to the motor. Ultimately, controlling the efficiency of molecular motors requires a detailed picture of the molecular dynamics on the excited-state potential energy surface. Here, we characterize the primary events that follow photon absorption by a unidirectional molecular motor using ultrafast fluorescence up-conversion measurements with sub 50 fs time resolution. We observe an extraordinarily fast initial relaxation out of the Franck-Condon region that suggests a barrierless reaction coordinate. This fast molecular motion is shown to be accompanied by the excitation of coherent excited-state structural motion. The implications of these observations for manipulating motor efficiency are discussed.
光驱动分子马达通过激发态反应将光转化为机械能。基于手性拥挤烯烃的单向旋转分子马达通过连续的光化学和热步骤来运转。热(螺旋反转)步骤已经通过分子结构的变化成功优化,但对于为马达提供动力的光化学步骤,人们知之甚少。最终,控制分子马达的效率需要对激发态势能表面上的分子动力学有一个详细的了解。在这里,我们使用具有亚 50 fs 时间分辨率的超快荧光上转换测量来表征单向分子马达吸收光子后发生的主要事件。我们观察到一个非常快速的初始弛豫出 Franck-Condon 区域,这表明反应坐标没有障碍。这种快速的分子运动被证明伴随着相干激发态结构运动的激发。讨论了这些观察结果对操纵马达效率的影响。