Suppr超能文献

化学优化分子旋转马达的运行效率。

Chemically optimizing operational efficiency of molecular rotary motors.

机构信息

School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, United Kingdom.

出版信息

J Am Chem Soc. 2014 Jul 9;136(27):9692-700. doi: 10.1021/ja5041368. Epub 2014 Jun 25.

Abstract

Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but less attention has been focused on excited-state processes. Here the excited-state dynamics of a molecular motor with electron donor and acceptor substituents located to modify the excited-state reaction coordinate, without altering its stereochemistry, are studied. The substituents are shown to modify the photochemical yield of the isomerization without altering the motor frequency. By combining 50 fs resolution time-resolved fluorescence with ultrafast transient absorption spectroscopy the underlying excited-state dynamics are characterized. The Franck-Condon excited state relaxes in a few hundred femtoseconds to populate a lower energy dark state by a pathway that utilizes a volume conserving structural change. This is assigned to pyramidalization at a carbon atom of the isomerizing bridging double bond. The structure and energy of the dark state thus reached are a function of the substituent, with electron-withdrawing groups yielding a lower energy longer lived dark state. The dark state is coupled to the Franck-Condon state and decays on a picosecond time scale via a coordinate that is sensitive to solvent friction, such as rotation about the bridging bond. Neither subpicosecond nor picosecond dynamics are sensitive to solvent polarity, suggesting that intramolecular charge transfer and solvation are not key driving forces for the rate of the reaction. Instead steric factors and medium friction determine the reaction pathway, with the sterically remote substitution primarily influencing the energetics. Thus, these data indicate a chemical method of optimizing the efficiency of operation of these molecular motors without modifying their overall rotational frequency.

摘要

单向分子旋转马达利用光诱导的顺反(E-Z)异构化将光能转化为纳米级分子机器中的机械运动,是一种很有前途的工具。在优化基态旋转频率方面已经取得了相当大的进展,但对激发态过程的关注较少。在这里,研究了具有电子给体和受体取代基的分子马达的激发态动力学,这些取代基被用来修饰激发态反应坐标,而不改变其立体化学。取代基被证明可以改变异构化的光化学产率,而不改变马达的频率。通过将 50fs 分辨率的时间分辨荧光与超快瞬态吸收光谱相结合,对潜在的激发态动力学进行了表征。弗兰克-康登激发态在几百飞秒内弛豫,通过一种利用体积守恒结构变化的途径,将能量转移到较低能量的暗态。这被分配到异构化桥接双键碳原子的三角化。因此,所达到的暗态的结构和能量是取代基的函数,吸电子基团产生能量更低、寿命更长的暗态。暗态与弗兰克-康登态耦合,并通过对溶剂摩擦敏感的坐标在皮秒时间尺度上衰减,例如桥接键的旋转。亚皮秒和皮秒动力学都不受溶剂极性的影响,这表明分子内电荷转移和溶剂化不是反应速率的关键驱动力。相反,空间位阻因素和介质摩擦决定了反应途径,远程取代基主要影响能量。因此,这些数据表明,在不改变分子马达整体旋转频率的情况下,优化这些分子马达的操作效率的一种化学方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验