Max Planck Institute for Plant Breeding Research, Cologne, Germany.
BMC Plant Biol. 2012 Jun 21;12:97. doi: 10.1186/1471-2229-12-97.
The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway.
Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1.
We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.
生物钟是一种内源性机制,它使生物过程与环境中的日常变化相协调。在植物中,昼夜节律有助于农业生产力和进化适应性。在大麦中,光周期反应调节剂和开花时间基因 Ppd-H1 与拟南芥核心时钟基因 PRR7 同源。然而,关于 Ppd-H1 及其他生物钟成分在温带作物中的作用,我们知之甚少。在这项研究中,我们鉴定了大麦时钟同源物,并测试了 Ppd-H1 上的自然遗传变异对光周期反应途径中时钟和输出基因的昼夜和昼夜表达的影响。
与拟南芥相比,大麦时钟同源物 HvCCA1、HvGI、HvPRR1、HvPRR37(Ppd-H1)、HvPRR73、HvPRR59 和 HvPRR95 的序列相似性和昼夜表达模式的保守性都很高。Ppd-H1 上的自然突变并不影响大麦时钟基因的昼夜或昼夜循环。然而,在自由运行条件下,Ppd-H1 突变体被发现对光周期反应基因 HvCO1、HvCO2 和 MADS 盒转录因子及春化响应基因 Vrn-H1 失去了节律性。
我们认为,所描述的真双子叶植物时钟在单子叶大麦中基本保守。然而,基因家族内的遗传分化以及 Ppd-H1 功能的差异表明被子植物时钟发生了进化修饰。我们的数据表明,Ppd-H1 上的自然变异不会影响时钟基因的表达水平,但控制光周期输出基因。大麦中 Vrn-H1 的昼夜节律控制表明,这个春化响应基因也受光周期反应途径的控制。大麦生物钟的结构和功能特征将为进一步研究生物钟在禾本科物种中的适应意义奠定基础。