Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
J Am Chem Soc. 2012 Jul 18;134(28):11701-8. doi: 10.1021/ja303698e. Epub 2012 Jul 9.
The advancement of direct solar-to-fuel conversion technologies requires the development of efficient catalysts as well as efficient materials and novel approaches for light harvesting and charge separation. We report a novel system for unprecedentedly efficient (with near-unity quantum yield) light-driven reduction of methylviologen (MV(2+)), a common redox mediator, using colloidal quasi-type II CdSe/CdS dot-in-rod nanorods as a light absorber and charge separator and mercaptopropionic acid as a sacrificial electron donor. In the presence of Pt nanoparticles, this system can efficiently convert sunlight into H(2), providing a versatile redox mediator-based approach for solar-to-fuel conversion. Compared to related CdSe seed and CdSe/CdS core/shell quantum dots and CdS nanorods, the quantum yields are significantly higher in the CdSe/CdS dot-in-rod structures. Comparison of charge separation, recombination and hole filling rates in these complexes showed that the dot-in-rod structure enables ultrafast electron transfer to methylviologen, fast hole removal by sacrificial electron donor and slow charge recombination, leading to the high quantum yield for MV(2+) photoreduction. Our finding demonstrates that by controlling the composition, size and shape of quantum-confined nanoheterostructures, the electron and hole wave functions can be tailored to produce efficient light harvesting and charge separation materials.
直接将太阳能转化为燃料的技术的进步需要开发高效的催化剂,以及高效的材料和新颖的方法来进行光捕获和电荷分离。我们报告了一种新颖的系统,该系统使用胶体类量子限制型 II 型 CdSe/CdS 点-棒纳米棒作为光吸收体和电荷分离器,以及巯基丙酸作为牺牲电子供体,用于前所未有的高效(量子产率接近 1)光驱动的甲紫精(MV(2+))还原,这是一种常见的氧化还原介体。在 Pt 纳米粒子的存在下,该系统可以有效地将太阳光转化为 H(2),为太阳能到燃料的转化提供了一种通用的基于氧化还原介体的方法。与相关的 CdSe 种子和 CdSe/CdS 核/壳量子点以及 CdS 纳米棒相比,CdSe/CdS 点-棒结构的量子产率显著更高。在这些复合物中比较电荷分离、复合和空穴填充速率表明,点-棒结构能够实现超快电子向甲紫精的转移、通过牺牲电子供体快速去除空穴以及缓慢的电荷复合,从而产生高的 MV(2+)光还原量子产率。我们的发现表明,通过控制量子限制纳米异质结构的组成、尺寸和形状,可以调整电子和空穴波函数,以产生高效的光捕获和电荷分离材料。