Suppr超能文献

利用胶体纳异质结实现光驱动氧化还原介体还原的近量子产率和高效 H2 生成。

Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures.

机构信息

Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.

出版信息

J Am Chem Soc. 2012 Jul 18;134(28):11701-8. doi: 10.1021/ja303698e. Epub 2012 Jul 9.

Abstract

The advancement of direct solar-to-fuel conversion technologies requires the development of efficient catalysts as well as efficient materials and novel approaches for light harvesting and charge separation. We report a novel system for unprecedentedly efficient (with near-unity quantum yield) light-driven reduction of methylviologen (MV(2+)), a common redox mediator, using colloidal quasi-type II CdSe/CdS dot-in-rod nanorods as a light absorber and charge separator and mercaptopropionic acid as a sacrificial electron donor. In the presence of Pt nanoparticles, this system can efficiently convert sunlight into H(2), providing a versatile redox mediator-based approach for solar-to-fuel conversion. Compared to related CdSe seed and CdSe/CdS core/shell quantum dots and CdS nanorods, the quantum yields are significantly higher in the CdSe/CdS dot-in-rod structures. Comparison of charge separation, recombination and hole filling rates in these complexes showed that the dot-in-rod structure enables ultrafast electron transfer to methylviologen, fast hole removal by sacrificial electron donor and slow charge recombination, leading to the high quantum yield for MV(2+) photoreduction. Our finding demonstrates that by controlling the composition, size and shape of quantum-confined nanoheterostructures, the electron and hole wave functions can be tailored to produce efficient light harvesting and charge separation materials.

摘要

直接将太阳能转化为燃料的技术的进步需要开发高效的催化剂,以及高效的材料和新颖的方法来进行光捕获和电荷分离。我们报告了一种新颖的系统,该系统使用胶体类量子限制型 II 型 CdSe/CdS 点-棒纳米棒作为光吸收体和电荷分离器,以及巯基丙酸作为牺牲电子供体,用于前所未有的高效(量子产率接近 1)光驱动的甲紫精(MV(2+))还原,这是一种常见的氧化还原介体。在 Pt 纳米粒子的存在下,该系统可以有效地将太阳光转化为 H(2),为太阳能到燃料的转化提供了一种通用的基于氧化还原介体的方法。与相关的 CdSe 种子和 CdSe/CdS 核/壳量子点以及 CdS 纳米棒相比,CdSe/CdS 点-棒结构的量子产率显著更高。在这些复合物中比较电荷分离、复合和空穴填充速率表明,点-棒结构能够实现超快电子向甲紫精的转移、通过牺牲电子供体快速去除空穴以及缓慢的电荷复合,从而产生高的 MV(2+)光还原量子产率。我们的发现表明,通过控制量子限制纳米异质结构的组成、尺寸和形状,可以调整电子和空穴波函数,以产生高效的光捕获和电荷分离材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验