Department of Virology and Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
J Gastroenterol. 2013 Feb;48(2):222-37. doi: 10.1007/s00535-012-0619-7. Epub 2012 Jun 22.
Butein has been reported to prevent and partly reverse liver fibrosis in vivo; however, the mechanisms of its action are poorly understood. We, therefore, aimed to determine the antifibrotic potential of butein.
We assessed the influence of the incubation of hepatic stellate cells (HSCs) and hepatoma cells (HepG2) with butein on sensitivity to ethanol- or acetaldehyde-induced toxicity; the production of reactive oxygen species (ROS); the expression of markers of HSC activation, including smooth muscle α-actin (α-SMA) and procollagen I; and the production of transforming growth factor-β1 (TGF-β1), metalloproteinases-2 and -13 (MMP-2and MMP-13), and tissue inhibitors of metalloproteinases (TIMPs). The influence of butein on intracellular signals in HSCs; i.e., nuclear factor-κB (NFκB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) induced by ethanol was estimated.
Butein protected HSCs and HepG2 cells against ethanol toxicity by the inhibition of ethanol- or acetaldehyde-induced production of ROS when cells were incubated separately or in co-cultures; butein also inhibited HSC activation measured as the production of α-SMA and procollagen I. As well, butein downregulated ethanol- or acetaldehyde-induced HSC migration and the production of TGF-β, TIMP-1, and TIMP-2; decreased the activity of MMP-2; and increased the activity of MMP-13. In ethanol-induced HSCs, butein inhibited the activation of the p38 MAPK and JNK transduction pathways as well as significantly inhibiting the phosphorylation of NF κB inhibitor (IκB) and Smad3.
The results indicated that butein inhibited ethanol- and acetaldehyde-induced activation of HSCs at different levels, acting as an antioxidant and inhibitor of ethanol-induced MAPK, TGF-β, and NFκB/IκB transduction signaling; this result makes butein a promising agent for antifibrotic therapies.
已有研究表明,刺槐素可预防和部分逆转体内肝纤维化,但作用机制尚不清楚。因此,本研究旨在评估刺槐素的抗纤维化潜力。
我们评估了刺槐素孵育肝星状细胞(HSCs)和肝癌细胞(HepG2)对乙醇或乙醛诱导毒性、活性氧(ROS)产生、HSC 激活标志物(包括平滑肌α-肌动蛋白(α-SMA)和 I 型前胶原)表达以及转化生长因子-β1(TGF-β1)、基质金属蛋白酶-2 和 -13(MMP-2 和 MMP-13)和金属蛋白酶组织抑制剂(TIMP)产生的影响。我们还评估了刺槐素对乙醇诱导的 HSCs 内信号(核因子-κB(NFκB)、c-Jun N-末端激酶(JNK)和丝裂原活化蛋白激酶 p38(p38 MAPK))的影响。
当单独孵育或共培养时,刺槐素通过抑制乙醇或乙醛诱导的 ROS 产生来保护 HSCs 和 HepG2 细胞免受乙醇毒性的影响,还抑制了作为 α-SMA 和 I 型前胶原产生的 HSC 激活。此外,刺槐素还下调了乙醇或乙醛诱导的 HSC 迁移以及 TGF-β、TIMP-1 和 TIMP-2 的产生,降低了 MMP-2 的活性,增加了 MMP-13 的活性。在乙醇诱导的 HSCs 中,刺槐素抑制了 p38 MAPK 和 JNK 转导通路的激活,同时显著抑制了 NFκB 抑制剂(IκB)和 Smad3 的磷酸化。
结果表明,刺槐素通过作为抗氧化剂和抑制乙醇诱导的 MAPK、TGF-β 和 NFκB/IκB 转导信号,在不同水平上抑制乙醇和乙醛诱导的 HSCs 激活,这使其成为一种有前途的抗纤维化治疗药物。