Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, 46202, United States.
Acc Chem Res. 2012 Sep 18;45(9):1533-47. doi: 10.1021/ar300052s. Epub 2012 Jun 22.
Cyclopropanes occur in a diverse array of natural products, including pheromones, steroids, terpenes, fatty acid metabolites, and amino acids, and compounds that contain cyclopropanes exhibit interesting and important pharmacological properties. These valuable synthetic intermediates can be functionalized, or their rings can be opened, and the synthetic utility and unique biological activity of cyclopropanes have inspired many investigations into their preparation. One of the most powerful methods to generate cyclopropanes is the Simmons-Smith cyclopropanation. Since the original studies in the late 1950s reported that IZnCH(2)I could transform alkenes into cyclopropanes, researchers have introduced various modifications of the original procedure. Significantly, Furukawa demonstrated that diethylzinc and CH(2)I(2) react to generate carbenoids, and Shi described more reactive zinc carbenoids that contain electron-withdrawing groups on zinc (XZnCHI(2)). Despite these advances, the development of catalytic asymmetric Simmons-Smith reactions remains challenging. Although researchers have achieved catalytic asymmetric cyclopropanation of allylic alcohols, these reactions have had limited success. One attractive approach to the synthesis of cyclopropanes involves tandem reactions, where researchers carry out sequential synthetic transformations without the isolation or purification of intermediates. Such a synthetic strategy minimizes difficulties in the handling and purification of reactive intermediates and maximizes yields and the generation of molecular complexity. This Account summarizes our recent effort in the one-pot enantio- and diastereoselective synthesis of cyclopropyl alcohols. In one approach, an asymmetric alkyl addition to α,β-unsaturated aldehydes or asymmetric vinylation of aliphatic or aromatic aldehydes generates allylic zinc alkoxide intermediates. Directed diastereoselective cyclopropanation of the resulting alkoxide intermediates using in situ generated zinc carbenoids provides cyclopropyl or halocyclopropyl alcohols with high enantio-, diastereo-, and chemoselectivity. Other strategies employ bimetallic reagents such as 1-alkenyl-1,1-heterobimetallics or CH(2)(ZnI)(2) and provide access to di- and trisubstituted cyclopropyl alcohols. These methods enable facile access to skeletally diverse chiral cyclopropyl alcohols in high yields and stereoselectivities without the isolation or purification of the intermediates.
环丙烷广泛存在于各种天然产物中,包括信息素、类固醇、萜类、脂肪酸代谢物和氨基酸,并且含有环丙烷的化合物表现出有趣和重要的药理学性质。这些有价值的合成中间体可以被官能化,或者它们的环可以被打开,环丙烷的合成实用性和独特的生物活性激发了许多对其制备的研究。生成环丙烷的最强大方法之一是 Simmons-Smith 环丙烷化。自 20 世纪 50 年代后期的原始研究报道 IZnCH(2)I 可以将烯烃转化为环丙烷以来,研究人员已经对原始程序进行了各种修改。值得注意的是,Furukawa 证明了二乙基锌和 CH(2)I(2)反应生成卡宾,Shi 描述了更具反应性的含有锌上吸电子基团的锌卡宾 (XZnCHI(2))。尽管取得了这些进展,但催化不对称 Simmons-Smith 反应的发展仍然具有挑战性。尽管研究人员已经实现了烯丙醇的催化不对称环丙烷化,但这些反应的成功有限。一种有吸引力的环丙烷合成方法涉及串联反应,其中研究人员在不分离或纯化中间体的情况下连续进行合成转化。这种合成策略最大限度地减少了对反应性中间体的处理和纯化的困难,并最大限度地提高了收率和分子复杂性的产生。本综述总结了我们最近在一锅法对映选择性和非对映选择性合成环丙醇方面的努力。在一种方法中,不对称烷基加成到α,β-不饱和醛或不对称乙烯基化脂肪族或芳香族醛生成烯丙基锌烷氧基中间体。用原位生成的锌卡宾对所得烷氧基中间体进行定向非对映选择性环丙烷化,提供具有高对映选择性、非对映选择性和化学选择性的环丙基或卤代环丙醇。其他策略采用双金属试剂,如 1-烯基-1,1-杂双金属试剂或 CH(2)(ZnI)(2),并提供了获得二取代和三取代环丙醇的途径。这些方法能够以高产率和立体选择性轻松获得骨架多样的手性环丙醇,而无需分离或纯化中间体。