Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
Neuroimage. 2012 Sep;62(3):1643-57. doi: 10.1016/j.neuroimage.2012.06.014. Epub 2012 Jun 19.
Neuro-electromagnetic recording techniques (EEG, MEG, iEEG) provide high temporal resolution data to study the dynamics of neurocognitive networks: large scale neural assemblies involved in task-specific information processing. How does a neurocognitive network reorganize spatiotemporally on the order of a few milliseconds to process specific aspects of the task? At what times do networks segregate for task processing, and at what time scales does integration of information occur via changes in functional connectivity? Here, we propose a data analysis framework-Temporal microstructure of cortical networks (TMCN)-that answers these questions for EEG/MEG recordings in the signal space. Method validation is established on simulated MEG data from a delayed-match to-sample (DMS) task. We then provide an example application on MEG recordings during a paired associate task (modified from the simpler DMS paradigm) designed to study modality specific long term memory recall. Our analysis identified the times at which network segregation occurs for processing the memory recall of an auditory object paired to a visual stimulus (visual-auditory) in comparison to an analogous visual-visual pair. Across all subjects, onset times for first network divergence appeared within a range of 0.08-0.47 s after initial visual stimulus onset. This indicates that visual-visual and visual auditory memory recollection involves equivalent network components without any additional recruitment during an initial period of the sensory processing stage which is then followed by recruitment of additional network components for modality specific memory recollection. Therefore, we propose TMCN as a viable computational tool for extracting network timing in various cognitive tasks.
神经电磁记录技术(EEG、MEG、iEEG)提供了高时间分辨率的数据,用于研究神经认知网络的动态:涉及特定信息处理任务的大规模神经集合。神经认知网络如何在几毫秒的时间内重新组织时空,以处理任务的特定方面?在什么时间网络会为任务处理而分离,以及在什么时间尺度上通过功能连接的变化来发生信息整合?在这里,我们提出了一个数据分析框架——皮质网络的时间微结构(TMCN)——用于回答 EEG/MEG 记录在信号空间中的这些问题。方法验证是基于延迟匹配样本任务(DMS)的模拟 MEG 数据建立的。然后,我们提供了一个在配对联想任务期间的 MEG 记录的示例应用,该任务旨在研究特定模态的长期记忆回忆。我们的分析确定了在处理与视觉刺激配对的听觉对象的记忆回忆时网络分离发生的时间,与类似的视觉-视觉配对进行比较。在所有被试中,第一次网络分歧的起始时间出现在初始视觉刺激后 0.08-0.47 秒的范围内。这表明视觉-视觉和视觉听觉记忆回忆涉及相同的网络组件,在感觉处理阶段的初始时期没有任何额外的募集,随后为特定模态的记忆回忆募集额外的网络组件。因此,我们提出 TMCN 作为一种可行的计算工具,用于提取各种认知任务中的网络时间。