Momjian S, Seghier M, Seeck M, Michel C M
Department of Neurosurgery, Hôpital Cantonal Universitaire de Genève, Geneva, Switzerland.
Adv Tech Stand Neurosurg. 2003;28:91-142. doi: 10.1007/978-3-7091-0641-9_2.
The principles and methodology of event-related fMRI, electromagnetic source imaging and intracranial evoked potentials will be described along with some examples of the mapping of the neuronal networks of human cortical brain functions with the use of these techniques.
Functional brain mapping using PET or fMRI has provided clues on the functioning brain and notably on the functional neuroanatomy of cognitive functions. These mapping possibilities can be used to delineate in an individual patient the brain areas subserving a cerebral function that might be compromised by a surgery in a nearby location, or to target a functional neurosurgical procedure.
Brain functions and notably "higher brain functions" are served by a complex network of interrelating brain regions. Deeper insights into the functioning of a neuronal network can be gained by adding dynamic, i.e. temporal, information to the functional maps. This will demonstrate the orchestration of the activation of the different brain areas constituting the network, which gives clues to the information processing and therefore to the functioning of the different modules of the network. In order to track the flow of information and the sequential activation of the different brain regions constituting the network, brain activity has to be recorded at the speed of transfer of activation from one neuronal population to the other. The temporal resolution needed to achieve this is not in the range of traditional subtractive or comparative PET or fMRI techniques.
Novel fMRI methods that record haemodynamic signal changes after single events (event-related fMRI) are now able to determine sequential neural processing by distinguishing the relative onset-time of activity between different areas. The temporal resolution of event-related (ER) fMRI is sufficient to detect changes of mental activity within the order of several hundreds of milliseconds. This allows the exploration of a broad range of cognitive functions. Nevertheless, this technique is currently not rapid enough to observe the transient coordinations and oscillations of neuronal activities occurring across certain cortical areas during the performance of cognitive tasks. The temporal resolution needed for that is within the order of tens or a few milliseconds and is only accessible by EEG or MEG that allow true real-time measurements of the neuronal activity elicited by a stimulus. Surface recordings of multichannel EEG or MEG combined with novel electromagnetic source localisation algorithms allow a relatively precise estimation of the activated areas. A more direct localisation of electric activity is achieved by intracranial recordings in patients having implanted electrodes for diagnostic reasons. In these cases, a high temporal and spatial resolution is achieved but with a limited sampling of brain regions.
Although the temporal resolution of ER fMRI is due to improve, the temporal measures provided by EEG, MEG or intracranial event-related potentials (ERPs) are absolute, which remains a unique feature of these techniques. Therefore, ER fMRI and electromagnetic source imaging are complementary. The maps obtained with ER fMRI may be refined by electromagnetic ERPs that provide further insights into the temporal coordination or orchestration between the cortical areas already detected by ER fMRI and constituting a neuronal network, and ER fMRI can be used to precisely locate the areas coarsely situated and delineated by electromagnetic source imaging. Thus, the combination of ER fMRI and electromagnetic ERPs is essential in order to produce a mapping method with a millimetre spatial resolution and a millisecond temporal resolution. Future applications should combine these techniques to localise precisely and non-invasively relevant sensory, motor and cognitive processes in order to adequately tailor any brain surgery.
将描述事件相关功能磁共振成像(fMRI)、电磁源成像和颅内诱发电位的原理及方法,并列举一些使用这些技术绘制人类大脑皮质功能神经网络的实例。
使用正电子发射断层扫描(PET)或功能磁共振成像(fMRI)进行脑功能图谱绘制,为了解大脑功能,尤其是认知功能的功能性神经解剖学提供了线索。这些图谱绘制方法可用于在个体患者中描绘可能因附近手术而受损的脑功能所涉及的脑区,或用于定位功能性神经外科手术的靶点。
大脑功能,尤其是“高级脑功能”,由相互关联的复杂脑区网络提供支持。通过在功能图谱中添加动态信息,即时间信息,可以更深入地了解神经元网络的功能。这将展示构成网络的不同脑区激活的协同作用,从而为信息处理以及网络不同模块的功能提供线索。为了追踪信息流动以及构成网络的不同脑区的顺序激活,必须以激活从一个神经元群体传递到另一个神经元群体的速度记录大脑活动。实现这一点所需的时间分辨率不在传统的减法或比较PET或fMRI技术范围内。
记录单个事件后血流动力学信号变化的新型功能磁共振成像方法(事件相关功能磁共振成像),现在能够通过区分不同区域活动的相对起始时间来确定顺序神经处理过程。事件相关功能磁共振成像(ER-fMRI)的时间分辨率足以检测几百毫秒内的心理活动变化。这使得能够探索广泛的认知功能。然而,该技术目前还不够快速,无法观察到在执行认知任务期间某些皮质区域发生的神经元活动的瞬时协调和振荡。为此所需的时间分辨率在几十毫秒或几毫秒的范围内,只有脑电图(EEG)或脑磁图(MEG)能够实现,它们允许对刺激引发的神经元活动进行真正的实时测量。多通道脑电图或脑磁图的表面记录与新型电磁源定位算法相结合,能够相对精确地估计激活区域。对于因诊断原因植入电极的患者,通过颅内记录可实现电活动更直接的定位。在这些情况下,可实现高时间和空间分辨率,但脑区采样有限。
尽管事件相关功能磁共振成像的时间分辨率有望提高,但脑电图、脑磁图或颅内事件相关电位(ERP)提供的时间测量是绝对的,这仍然是这些技术的独特特征。因此,事件相关功能磁共振成像和电磁源成像具有互补性。通过事件相关功能磁共振成像获得的图谱可通过电磁事件相关电位进行细化,电磁事件相关电位能进一步深入了解已被事件相关功能磁共振成像检测到并构成神经元网络的皮质区域之间的时间协调或协同作用,而事件相关功能磁共振成像可用于精确定位由电磁源成像粗略定位和描绘的区域。因此,事件相关功能磁共振成像和电磁事件相关电位的结合对于产生具有毫米级空间分辨率和毫秒级时间分辨率的图谱绘制方法至关重要。未来的应用应结合这些技术,以精确且非侵入性地定位相关的感觉、运动和认知过程,从而为任何脑部手术提供适当的指导。