Suppr超能文献

终端氧化酶 cbb3 在 Magnetospirillum gryphiswaldense 中磁铁矿生物矿化的氧化还原控制中起作用。

The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense.

机构信息

Ludwig Maximilians Universität München, Department Biologie I, Mikrobiologie, Planegg-Martinsried, Germany.

Ludwig Maximilians Universität München, Department Biologie I, Mikrobiologie, Planegg-Martinsried, Germany Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Martinsried, Germany.

出版信息

J Bacteriol. 2014 Jul;196(14):2552-62. doi: 10.1128/JB.01652-14. Epub 2014 May 2.

Abstract

The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense and other magnetotactic bacteria occurs only under suboxic conditions. However, the mechanism of oxygen regulation and redox control of biosynthesis of the mixed-valence iron oxide magnetite [FeII(FeIII)2O4] is still unclear. Here, we set out to investigate the role of aerobic respiration in both energy metabolism and magnetite biomineralization of M. gryphiswaldense. Although three operons encoding putative terminal cbb3-type, aa3-type, and bd-type oxidases were identified in the genome assembly of M. gryphiswaldense, genetic and biochemical analyses revealed that only cbb3 and bd are required for oxygen respiration, whereas aa3 had no physiological significance under the tested conditions. While the loss of bd had no effects on growth and magnetosome synthesis, inactivation of cbb3 caused pleiotropic effects under microaerobic conditions in the presence of nitrate. In addition to their incapability of simultaneous nitrate and oxygen reduction, cbb3-deficient cells had complex magnetosome phenotypes and aberrant morphologies, probably by disturbing the redox balance required for proper growth and magnetite biomineralization. Altogether, besides being the primary terminal oxidase for aerobic respiration, cbb3 oxidase may serve as an oxygen sensor and have a further role in poising proper redox conditions required for magnetite biomineralization.

摘要

在格氏嗜甲基球菌和其他趋磁细菌中,磁小体的生物矿化仅在亚氧条件下发生。然而,混合价氧化铁磁铁矿[FeII(FeIII)2O4]生物合成的氧调节和氧化还原控制机制仍不清楚。在这里,我们着手研究好氧呼吸在格氏嗜甲基球菌的能量代谢和磁铁矿生物矿化中的作用。尽管在格氏嗜甲基球菌的基因组组装中鉴定出了三个编码假定末端 cbb3 型、aa3 型和 bd 型氧化酶的操纵子,但遗传和生化分析表明,只有 cbb3 和 bd 是氧气呼吸所必需的,而 aa3 在测试条件下没有生理意义。虽然 bd 的缺失对生长和磁小体合成没有影响,但 cbb3 的失活在有氧条件下存在硝酸盐时会导致微氧条件下的多效性影响。除了不能同时进行硝酸盐和氧气还原外,cbb3 缺陷细胞的磁小体表型和形态异常复杂,可能是通过干扰适当生长和磁铁矿生物矿化所需的氧化还原平衡。总的来说,cbb3 氧化酶除了是好氧呼吸的主要末端氧化酶外,还可能作为氧气传感器,并在调节磁铁矿生物矿化所需的适当氧化还原条件方面发挥进一步作用。

相似文献

引用本文的文献

9

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验