Department of Chemistry, University of California, Davis, CA 95616, USA.
Microb Cell Fact. 2012 Jun 25;11:90. doi: 10.1186/1475-2859-11-90.
Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde.
We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD(600) (isobutanol) vs 0.14 g/L/OD(600) (isobutyraldehyde)). Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR) activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD(600)) and decreased isobutanol production (0.4 g/L/OD(600)). By assessing production by overexpression of each candidate IBR, we reveal that AdhP, EutG, YjgB, and FucO are active toward isobutyraldehyde. Finally, we assessed long-term isobutyraldehyde production of our best strain containing a total of 15 gene deletions using a gas stripping system with in situ product removal, resulting in a final titer of 35 g/L after 5 days.
In this work, we optimized E. coli for the production of the important chemical feedstock isobutyraldehyde by the removal of IBRs. Long-term production yielded industrially relevant titers of isobutyraldehyde with in situ product removal. The mutational load imparted on E. coli in this work demonstrates the versatility of metabolic engineering for strain improvements.
全球对石油衍生化学品的需求和依赖不断增加,这将需要替代化学原料的来源。目前,99%的化学原料都来自石油和天然气。可再生方法生产重要的化学原料在很大程度上仍未得到解决。合成生物学使通过构建独特的代谢途径从微生物中可再生生产各种化学品成为可能。在这里,我们通过构建独特的代谢途径,使大肠杆菌能够生产异丁醛,然后可以使用现有的化学催化作用将其很容易地转化为目前从石油中获得的各种烃类物质,如异丁酸、缩醛、肟和亚胺。在生产过程中可以很容易地从培养物中去除异丁醛,从而降低异丁醛的毒性。
我们采用了之前在大肠杆菌中构建的异丁醇途径,忽略了该途径中异丁醛转化为异丁醇的最后一步。然而,该菌株仍然主要产生异丁醇(1.5g/L/OD(600)(异丁醇)比 0.14g/L/OD(600)(异丁醛))。接下来,我们删除了编码一种广泛底物范围醛还原酶的 yqhD 基因,该酶已知对异丁醛有活性。该菌株以 1:1 的比例产生异丁醇和异丁醛,表明大肠杆菌中存在进一步的天然异丁醛还原酶(IBR)活性。为了进一步消除异丁醇的形成,我们着手从大肠杆菌基因组中鉴定和去除剩余的 IBR。我们鉴定了 7 个可能对异丁醛有活性的编码 IBR 的注释基因:adhP、 eutG、yiaY、yjgB、betA、fucO、eutE。单个基因的缺失仅产生了微小的改善。因此,我们依次删除了所有 7 个基因并评估了产量。这些基因的组合缺失极大地提高了异丁醛的产量(1.5g/L/OD(600)),降低了异丁醇的产量(0.4g/L/OD(600))。通过评估每个候选 IBR 的过表达生产情况,我们发现 AdhP、EutG、YjgB 和 FucO 对异丁醛有活性。最后,我们使用原位产物去除的气体汽提系统评估了我们含有总共 15 个基因缺失的最佳菌株的长期异丁醛生产情况,5 天后最终产量为 35g/L。
在这项工作中,我们通过去除 IBR,优化了大肠杆菌生产重要化学原料异丁醛的能力。长期生产得到了具有工业相关性的异丁醛产量,并采用了原位产物去除。这项工作对大肠杆菌施加的突变负荷证明了代谢工程在菌株改进方面的多功能性。