Suppr超能文献

在工程大肠杆菌菌株中,替代代谢途径的激活会使碳通量偏离异丁醇的形成。

Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain.

机构信息

DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India.

Department of Chemical Engineering, Institute of Chemical Technology, Nathatlal Parekh Marg, Matunga (East), Mumbai, Maharashtra, 400019, India.

出版信息

Biotechnol Lett. 2019 Jul;41(6-7):823-836. doi: 10.1007/s10529-019-02683-5. Epub 2019 May 15.

Abstract

OBJECTIVE

Metabolic engineering efforts are guided by identifying gene targets for overexpression and/or deletion. Isobutanol, a biofuel candidate, is biosynthesized using the valine biosynthesis pathway and enzymes of the Ehrlich pathway. Most reported studies for isobutanol production in Escherichia coli employ multicopy plasmids, an approach that suffers from disadvantages such as plasmid instability, increased metabolic burden, and use of antibiotics to maintain selection pressure. Cofactor imbalance is another issue that may limit production of isobutanol, as two enzymes of the pathway utilize NADPH as a cofactor.

RESULTS

To address these issues, we constructed E. coli strains with chromosomally-integrated, codon-optimized isobutanol pathway genes (ilvGM, ilvC, kivd, adh) selected on the basis of their cofactor preferences. Genes involved in diverting pyruvate flux toward fermentation byproducts were deleted. Metabolite analyses of the constructed strains revealed extracellular accumulation of significant amounts of isobutyraldehyde, a pathway intermediate, and the overflow metabolites 2,3-butanediol and acetol.

CONCLUSIONS

These results demonstrate that the genetic modifications carried out led to activation of alternative pathways that diverted carbon flux toward formation of unwanted metabolites. The present study highlights how precursor metabolites can be metabolized through enzymatic routes that have not been considered important in previous studies due to the different strategies employed therein. The insights gained from the present study will allow rational genetic modification of host cells for production of metabolites of interest.

摘要

目的

代谢工程的指导原则是确定基因的过表达和/或缺失靶点。异丁醇是一种生物燃料候选物,它是通过缬氨酸生物合成途径和 Ehrlich 途径的酶合成的。大多数在大肠杆菌中生产异丁醇的报道研究采用多拷贝质粒,这种方法存在质粒不稳定、代谢负担增加和使用抗生素维持选择压力等缺点。辅酶失衡也是可能限制异丁醇生产的另一个问题,因为该途径的两个酶都利用 NADPH 作为辅酶。

结果

为了解决这些问题,我们构建了带有染色体整合的、密码子优化的异丁醇途径基因(ilvGM、ilvC、kivd、adh)的大肠杆菌菌株,这些基因是根据它们的辅酶偏好选择的。参与将丙酮酸通量分流到发酵副产物的基因被删除。对构建菌株的代谢物分析表明,细胞外积累了大量的异丁醛,这是一种途径中间体,以及溢出代谢物 2,3-丁二醇和乙酰醇。

结论

这些结果表明,所进行的遗传修饰导致了替代途径的激活,这些途径将碳通量分流到形成不需要的代谢物。本研究强调了前体代谢物如何通过酶途径进行代谢,这些途径在以前的研究中由于采用了不同的策略而被认为不重要。本研究获得的见解将允许对宿主细胞进行合理的遗传修饰,以生产感兴趣的代谢物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验