The Ting Tsung and Wei Fong Chao Center for Bioinformatics Research and Imaging for Neurosciences, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.
Neuroimage. 2012 Sep;62(3):2040-54. doi: 10.1016/j.neuroimage.2012.06.020. Epub 2012 Jun 23.
Synaptic vesicle dynamics play an important role in the study of neuronal and synaptic activities of neurodegradation diseases ranging from the epidemic Alzheimer's disease to the rare Rett syndrome. A high-throughput assay with a large population of neurons would be useful and efficient to characterize neuronal activity based on the dynamics of synaptic vesicles for the study of mechanisms or to discover drug candidates for neurodegenerative and neurodevelopmental disorders. However, the massive amounts of image data generated via high-throughput screening require enormous manual processing time and effort, restricting the practical use of such an assay. This paper presents an automated analytic system to process and interpret the huge data set generated by such assays. Our system enables the automated detection, segmentation, quantification, and measurement of neuron activities based on the synaptic vesicle assay. To overcome challenges such as noisy background, inhomogeneity, and tiny object size, we first employ MSVST (Multi-Scale Variance Stabilizing Transform) to obtain a denoised and enhanced map of the original image data. Then, we propose an adaptive thresholding strategy to solve the inhomogeneity issue, based on the local information, and to accurately segment synaptic vesicles. We design algorithms to address the issue of tiny objects of interest overlapping. Several post processing criteria are defined to filter false positives. A total of 152 features are extracted for each detected vesicle. A score is defined for each synaptic vesicle image to quantify the neuron activity. We also compare the unsupervised strategy with the supervised method. Our experiments on hippocampal neuron assays showed that the proposed system can automatically detect vesicles and quantify their dynamics for evaluating neuron activities. The availability of such an automated system will open opportunities for investigation of synaptic neuropathology and identification of candidate therapeutics for neurodegeneration.
突触囊泡动力学在研究从流行的阿尔茨海默病到罕见的雷特综合征等神经退行性疾病的神经元和突触活动中起着重要作用。高通量检测方法能够对大量神经元进行检测,基于突触囊泡动力学对神经元活动进行特征分析,有助于研究疾病机制或发现神经退行性和神经发育性疾病的候选药物。然而,高通量筛选产生的大量图像数据需要大量的手动处理时间和精力,限制了这种检测方法的实际应用。本文提出了一种自动化分析系统,用于处理和解释这种检测方法产生的大量数据集。我们的系统可以基于突触囊泡检测实现神经元活动的自动检测、分割、量化和测量。为了克服噪声背景、不均匀性和微小目标尺寸等挑战,我们首先使用 MSVST(多尺度方差稳定变换)对原始图像数据进行去噪和增强处理。然后,我们提出了一种基于局部信息的自适应阈值策略来解决不均匀性问题,并准确分割突触囊泡。我们设计了算法来解决感兴趣的微小目标重叠的问题。对每个检测到的囊泡定义了几个后处理标准来过滤假阳性。为每个检测到的囊泡提取了 152 个特征。为每个突触囊泡图像定义了一个分数来量化神经元活动。我们还比较了无监督策略和有监督方法。我们在海马神经元检测中的实验表明,该系统可以自动检测囊泡并量化其动力学,从而评估神经元活动。这种自动化系统的可用性将为研究突触神经病理学和鉴定神经退行性疾病的候选治疗方法提供机会。