Fan Jing, Zhou Xiaobo, Dy Jennifer G, Zhang Yong, Wong Stephen T C
Center for Biotechnology and Informatics, Department of Radiology, The Methodist Hospital Research Institute & The Methodist Hospital, Weill Cornell Medical College, Houston, TX 77030, USA.
Neuroinformatics. 2009 Jun;7(2):113-30. doi: 10.1007/s12021-009-9047-0. Epub 2009 May 12.
The variations in dendritic branch morphology and spine density provide insightful information about the brain function and possible treatment to neurodegenerative disease, for example investigating structural plasticity during the course of Alzheimer's disease. Most automated image processing methods aiming at analyzing these problems are developed for in vitro data. However, in vivo neuron images provide real time information and direct observation of the dynamics of a disease process in a live animal model. This paper presents an automated approach for detecting spines and tracking spine evolution over time with in vivo image data in an animal model of Alzheimer's disease. We propose an automated pipeline starting with curvilinear structure detection to determine the medial axis of the dendritic backbone and spines connected to the backbone. We, then, propose the adaptive local binary fitting (aLBF) energy level set model to accurately locate the boundary of dendritic structures using the central line of curvilinear structure as initialization. To track the growth or loss of spines, we present a maximum likelihood based technique to find the graph homomorphism between two image graph structures at different time points. We employ dynamic programming to search for the optimum solution. The pipeline enables us to extract dynamically changing information from real time in vivo data. We validate our proposed approach by comparing with manual results generated by neurologists. In addition, we discuss the performance of 3D based segmentation and conclude that our method is more accurate in identifying weak spines. Experiments show that our approach can quickly and accurately detect and quantify spines of in vivo neuron images and is able to identify spine elimination and formation.
树突分支形态和棘突密度的变化为大脑功能及神经退行性疾病的可能治疗提供了有价值的信息,例如在阿尔茨海默病病程中研究结构可塑性。大多数旨在分析这些问题的自动化图像处理方法是针对体外数据开发的。然而,体内神经元图像可提供实时信息,并能直接观察活体动物模型中疾病进程的动态变化。本文提出了一种自动化方法,用于在阿尔茨海默病动物模型中利用体内图像数据检测棘突并跟踪棘突随时间的演变。我们提出了一个自动化流程,首先进行曲线结构检测以确定树突主干的中轴线以及与主干相连的棘突。然后,我们提出自适应局部二值拟合(aLBF)能量水平集模型,以曲线结构的中心线为初始化来精确确定树突结构的边界。为了跟踪棘突的生长或消失,我们提出了一种基于最大似然的技术,以找到不同时间点两个图像图形结构之间的图同态。我们采用动态规划来搜索最优解。该流程使我们能够从实时体内数据中提取动态变化的信息。我们通过与神经学家生成的手动结果进行比较来验证我们提出的方法。此外,我们讨论了基于三维分割的性能,并得出我们的方法在识别弱棘突方面更准确的结论。实验表明,我们的方法能够快速准确地检测和量化体内神经元图像的棘突,并能够识别棘突的消除和形成。