Suppr超能文献

一种使用马尔可夫模型的新型细胞分割方法及细胞相位识别

A novel cell segmentation method and cell phase identification using Markov model.

作者信息

Zhou Xiaobo, Li Fuhai, Yan Jun, Wong Stephen T C

机构信息

The Methodist Hospital Research Institute, Weill Medical College, Cornell University, Houston, TX 77030, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2009 Mar;13(2):152-7. doi: 10.1109/TITB.2008.2007098.

Abstract

Optical microscopy is becoming an important technique in drug discovery and life science research. The approaches used to analyze optical microscopy images are generally classified into two categories: automatic and manual approaches. However, the existing automatic systems are rather limited in dealing with large volume of time-lapse microscopy images because of the complexity of cell behaviors and morphological variance. On the other hand, manual approaches are very time-consuming. In this paper, we propose an effective automated, quantitative analysis system that can be used to segment, track, and quantize cell cycle behaviors of a large population of cells nuclei effectively and efficiently. We use adaptive thresholding and watershed algorithm for cell nuclei segmentation followed by a fragment merging method that combines two scoring models based on trend and no trend features. Using the context information of time-lapse data, the phases of cell nuclei are identified accurately via a Markov model. Experimental results show that the proposed system is effective for nuclei segmentation and phase identification.

摘要

光学显微镜正在成为药物发现和生命科学研究中的一项重要技术。用于分析光学显微镜图像的方法通常分为两类:自动方法和手动方法。然而,由于细胞行为的复杂性和形态变化,现有的自动系统在处理大量延时显微镜图像时相当有限。另一方面,手动方法非常耗时。在本文中,我们提出了一种有效的自动化定量分析系统,该系统可以有效且高效地分割、跟踪和量化大量细胞核的细胞周期行为。我们使用自适应阈值处理和分水岭算法进行细胞核分割,然后采用一种片段合并方法,该方法结合了基于趋势和无趋势特征的两个评分模型。利用延时数据的上下文信息,通过马尔可夫模型准确识别细胞核的阶段。实验结果表明,所提出的系统对于细胞核分割和阶段识别是有效的。

相似文献

1
A novel cell segmentation method and cell phase identification using Markov model.
IEEE Trans Inf Technol Biomed. 2009 Mar;13(2):152-7. doi: 10.1109/TITB.2008.2007098.
2
Context based mixture model for cell phase identification in automated fluorescence microscopy.
BMC Bioinformatics. 2007 Jan 30;8:32. doi: 10.1186/1471-2105-8-32.
3
Segmentation of clustered nuclei with shape markers and marking function.
IEEE Trans Biomed Eng. 2009 Mar;56(3):741-8. doi: 10.1109/TBME.2008.2008635. Epub 2008 Nov 11.
4
Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy.
Bioinformatics. 2008 Jan 1;24(1):94-101. doi: 10.1093/bioinformatics/btm530. Epub 2007 Nov 7.
6
Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy.
IEEE Trans Biomed Eng. 2006 Apr;53(4):762-6. doi: 10.1109/TBME.2006.870201.
7
3D cell nuclei segmentation based on gradient flow tracking.
BMC Cell Biol. 2007 Sep 4;8:40. doi: 10.1186/1471-2121-8-40.
8
Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis.
IEEE Trans Med Imaging. 2010 Jan;29(1):96-105. doi: 10.1109/TMI.2009.2027813. Epub 2009 Jul 28.
9
Medical image segmentation using watershed segmentation with texture-based region merging.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4039-42. doi: 10.1109/IEMBS.2008.4650096.
10
Automated analysis of the mitotic phases of human cells in 3D fluorescence microscopy image sequences.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):840-8. doi: 10.1007/11866565_103.

引用本文的文献

1
Densely Populated Cell and Organelles Segmentation with U-Net Ensembles.
bioRxiv. 2025 Jan 7:2024.11.19.623228. doi: 10.1101/2024.11.19.623228.
2
Comparing Deep Learning Performance for Chronic Lymphocytic Leukaemia Cell Segmentation in Brightfield Microscopy Images.
Bioinform Biol Insights. 2024 Sep 5;18:11779322241272387. doi: 10.1177/11779322241272387. eCollection 2024.
4
Three-dimensional GPU-accelerated active contours for automated localization of cells in large images.
PLoS One. 2019 Jun 7;14(6):e0215843. doi: 10.1371/journal.pone.0215843. eCollection 2019.
5
Segmentation of Total Cell Area in Brightfield Microscopy Images.
Methods Protoc. 2018 Nov 19;1(4):43. doi: 10.3390/mps1040043.
7
Unsupervised morphological segmentation of tissue compartments in histopathological images.
PLoS One. 2017 Nov 30;12(11):e0188717. doi: 10.1371/journal.pone.0188717. eCollection 2017.
8
Joint level-set and spatio-temporal motion detection for cell segmentation.
BMC Med Genomics. 2016 Aug 10;9 Suppl 2(Suppl 2):49. doi: 10.1186/s12920-016-0206-5.
9
Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.
IEEE Rev Biomed Eng. 2016;9:234-63. doi: 10.1109/RBME.2016.2515127. Epub 2016 Jan 6.
10
Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.
PLoS One. 2015 Jun 12;10(6):e0130178. doi: 10.1371/journal.pone.0130178. eCollection 2015.

本文引用的文献

1
Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy.
IEEE Trans Biomed Eng. 2006 Apr;53(4):762-6. doi: 10.1109/TBME.2006.870201.
5
Algorithms for cytoplasm segmentation of fluorescence labelled cells.
Anal Cell Pathol. 2002;24(2-3):101-11. doi: 10.1155/2002/821782.
7
Medical image analysis with fuzzy models.
Stat Methods Med Res. 1997 Sep;6(3):191-214. doi: 10.1177/096228029700600302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验