Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato Gto., 36821, Mexico.
BMC Evol Biol. 2012 Jun 26;12:101. doi: 10.1186/1471-2148-12-101.
Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations ('promiscuous' domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages.
Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements ('cassettes'). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii.
Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms.
保守结构域被认为是真核蛋白的构建模块。显示出与多种组合倾向的结构域(“混杂”结构域)参与了具有不同功能的蛋白质的多功能架构。基于对多个基因组中结构域组合的全局水平分析的当前模型表明,一些结构域与高级结构中其他结构域结合的倾向随着生物体复杂性的增加而增加。使用基于结构域的系统发育树的替代模型提出,不同谱系中的结构域通过趋同进化而变得混杂,因此是随机的,没有功能或结构偏好。在这里,我们检验复杂的蛋白质结构是否是由简单系统的累积形成的,以及多结构域组合的出现是否与生物体的复杂性平行。作为一个模型,我们分析了 PWWP 结构域的模块化进化,并询问其与其他结构域组合形成多结构域架构的出现是否与更复杂的生命形式的出现有关。通过进化作为稳定单元(盒)传递的高级结构域组合是否是保守的,在选择用于各自谱系进化中既定位置的植物或后生动物物种的基因组中进行了检查。
使用结构域树方法,我们分析了混杂的 PWWP 结构域的进化起源和分布模式,以了解其模块化进化的原理及其在高级蛋白质结构中与其他结构域结合的存在。我们发现,作为单个模块,PWWP 结构域仅存在于具有有限的、主要是种特异性分布的蛋白质中。早些时候,有人提出结构域混杂性是一种由自然选择塑造的快速变化(不稳定)特征,只有少数结构域在整个进化过程中保留其混杂状态。相比之下,我们的数据表明,现存多细胞生物(人类或陆地植物)中大多数多结构域 PWWP 组合都存在于其单细胞祖先亲属中,这表明它们已作为保守的线性排列(“盒”)通过进化传递。在最有趣的生物学相关结果中,有两个植物 Trithorax 家族亚群(ATX1/2 和 ATX3/4/5)的基因具有不同的进化起源。这两个亚群一起存在于最早的陆地植物Physcomitrella patens 和 Selaginella moellendorffii 中。
在整个进化过程中观察到单个 PWWP 结构域的增益/损失,反映了动态的谱系或物种特异性事件。相比之下,涉及 PWWP 结构域的高级蛋白质结构作为进化遗传的稳定排列而幸存下来。在 O. tauri 和后生动物谱系中,PWWP 结构域与 DNA 甲基转移酶的关联似乎是独立发生的,这与趋同进化一致。我们的结果不支持涉及 PWWP 结构域的更复杂蛋白质结构随着更先进的生命形式的出现而出现的模型。