Suppr超能文献

一种用于比较相关 LROC 曲线下面积的非参数方法。

A nonparametric procedure for comparing the areas under correlated LROC curves.

出版信息

IEEE Trans Med Imaging. 2012 Nov;31(11):2050-61. doi: 10.1109/TMI.2012.2205015. Epub 2012 Jun 18.

Abstract

In contrast to the receiver operating characteristic (ROC) assessment paradigm, localization ROC (LROC) analysis provides a means to jointly assess the accuracy of localization and detection in an observer study. In a typical multireader, multicase (MRMC) evaluation, the data sets are paired so that correlations arise in observer performance both between readers and across the imaging conditions (e.g., reconstruction methods or scanning parameters) being compared. Therefore, MRMC evaluations motivate the need for a statistical methodology to compare correlated LROC curves. In this work, we suggest a nonparametric strategy for this purpose. Specifically, we find that seminal work of Sen on U-statistics can be applied to estimate the covariance matrix for a vector of LROC area estimates. The resulting covariance estimator is the LROC analog of the covariance estimator given by DeLong et al. for ROC analysis. Once the covariance matrix is estimated, it can be used to construct confidence intervals and/or confidence regions for purposes of comparing observer performance across imaging conditions. In addition, given the results of a small-scale pilot study, the covariance estimator may be used to estimate the number of images and observers needed to achieve a desired confidence interval size in a full-scale observer study. The utility of our methodology is illustrated with a human-observer LROC evaluation of three image reconstruction strategies for fan-beam x-ray computed tomography (CT).

摘要

与接收器操作特性 (ROC) 评估范式相反,定位 ROC (LROC) 分析为观察者研究中联合评估定位和检测的准确性提供了一种手段。在典型的多读者、多病例 (MRMC) 评估中,数据集是配对的,因此观察者的表现既有读者之间的相关性,也有正在比较的成像条件(例如,重建方法或扫描参数)之间的相关性。因此,MRMC 评估促使我们需要一种统计方法来比较相关的 LROC 曲线。在这项工作中,我们为此目的提出了一种非参数策略。具体来说,我们发现 Sen 关于 U 统计量的开创性工作可用于估计 LROC 面积估计向量的协方差矩阵。由此产生的协方差估计量是 DeLong 等人针对 ROC 分析给出的协方差估计量的 LROC 模拟。一旦估计出协方差矩阵,就可以使用它来构建置信区间和/或置信区域,以便在成像条件下比较观察者的性能。此外,根据小规模试点研究的结果,协方差估计量可用于估计在全规模观察者研究中达到所需置信区间大小所需的图像和观察者数量。我们的方法的实用性通过对扇形束 X 射线计算机断层扫描 (CT) 的三种图像重建策略的人体观察者 LROC 评估来说明。

相似文献

1
A nonparametric procedure for comparing the areas under correlated LROC curves.一种用于比较相关 LROC 曲线下面积的非参数方法。
IEEE Trans Med Imaging. 2012 Nov;31(11):2050-61. doi: 10.1109/TMI.2012.2205015. Epub 2012 Jun 18.

引用本文的文献

6
Optimal Joint Detection and Estimation That Maximizes ROC-Type Curves.最大化ROC类曲线的最优联合检测与估计
IEEE Trans Med Imaging. 2016 Sep;35(9):2164-73. doi: 10.1109/TMI.2016.2553001. Epub 2016 Apr 13.

本文引用的文献

6
ROC analysis in medical imaging: a tutorial review of the literature.医学成像中的ROC分析:文献综述教程
Radiol Phys Technol. 2008 Jan;1(1):2-12. doi: 10.1007/s12194-007-0002-1. Epub 2007 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验