Suppr超能文献

通过高通量筛选和活性化合物优化策略发现小分子κ阿片受体激动剂和拮抗剂化学类型

Discovery of Small Molecule Kappa Opioid Receptor Agonist and Antagonist Chemotypes through a HTS and Hit Refinement Strategy.

作者信息

Frankowski Kevin J, Hedrick Michael P, Gosalia Palak, Li Kelin, Shi Shenghua, Whipple David, Ghosh Partha, Prisinzano Thomas E, Schoenen Frank J, Su Ying, Vasile S, Sergienko Eduard, Gray Wilson, Hariharan Santosh, Milan Loribelle, Heynen-Genel Susanne, Mangravita-Novo Arianna, Vicchiarelli Michael, Smith Layton H, Streicher John M, Caron Marc G, Barak Lawrence S, Bohn Laura M, Chung Thomas D Y, Aubé Jeffrey

机构信息

University of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, KS 66047.

出版信息

ACS Chem Neurosci. 2012 Mar 21;3(3):221-236. doi: 10.1021/cn200128x. Epub 2012 Jan 20.

Abstract

Herein we present the outcome of a high throughput screening (HTS) campaign-based strategy for the rapid identification and optimization of selective and general chemotypes for both kappa (κ) opioid receptor (KOR) activation and inhibition. In this program, we have developed potent antagonists (IC(50) < 120 nM) or agonists of high binding affinity (K(i) < 3 nM). In contrast to many important KOR ligands, the compounds presented here are highly modular, readily synthesized and, in most cases, achiral. The four new chemotypes hold promise for further development into chemical tools for studying the KOR or as potential therapeutic lead candidates.

摘要

在此,我们展示了一种基于高通量筛选(HTS)活动的策略的成果,该策略用于快速鉴定和优化κ阿片受体(KOR)激活和抑制的选择性及通用化学类型。在这个项目中,我们开发出了强效拮抗剂(IC(50) < 120 nM)或具有高结合亲和力的激动剂(K(i) < 3 nM)。与许多重要的KOR配体不同,本文介绍的化合物具有高度模块化、易于合成且在大多数情况下为非手性的特点。这四种新的化学类型有望进一步开发成为研究KOR的化学工具或作为潜在的治疗先导候选物。

相似文献

1
Discovery of Small Molecule Kappa Opioid Receptor Agonist and Antagonist Chemotypes through a HTS and Hit Refinement Strategy.
ACS Chem Neurosci. 2012 Mar 21;3(3):221-236. doi: 10.1021/cn200128x. Epub 2012 Jan 20.
2
Structure-Based Discovery of New Antagonist and Biased Agonist Chemotypes for the Kappa Opioid Receptor.
J Med Chem. 2017 Apr 13;60(7):3070-3081. doi: 10.1021/acs.jmedchem.7b00109. Epub 2017 Apr 3.
8
Quantification of kappa opioid receptor ligand potency, efficacy and desensitization using a real-time membrane potential assay.
Biomed Pharmacother. 2021 Nov;143:112173. doi: 10.1016/j.biopha.2021.112173. Epub 2021 Sep 15.
10
Discovery of Novel, Selective, and Nonbasic Agonists for the Kappa-Opioid Receptor Determined by Salvinorin A-Based Virtual Screening.
J Med Chem. 2024 Aug 22;67(16):13788-13801. doi: 10.1021/acs.jmedchem.4c00590. Epub 2024 Aug 1.

引用本文的文献

1
Searching for Synthetic Opioid Rescue Agents. 2: Identification of an Ultra-Potent Synthetic Opioid Rescue Agent.
J Med Chem. 2025 Jun 26;68(12):13057-13074. doi: 10.1021/acs.jmedchem.5c01108. Epub 2025 Jun 11.
2
Discovery of Potent Kappa Opioid Receptor Agonists Derived from Akuammicine.
J Med Chem. 2024 Dec 12;67(23):20842-20857. doi: 10.1021/acs.jmedchem.4c00736. Epub 2024 Nov 20.
3
Discovery of Novel, Selective, and Nonbasic Agonists for the Kappa-Opioid Receptor Determined by Salvinorin A-Based Virtual Screening.
J Med Chem. 2024 Aug 22;67(16):13788-13801. doi: 10.1021/acs.jmedchem.4c00590. Epub 2024 Aug 1.
4
Synthesis and evaluation of 3,4,5-trisubstituted triazoles as G protein-biased kappa opioid receptor agonists.
Eur J Med Chem. 2024 Oct 5;276:116627. doi: 10.1016/j.ejmech.2024.116627. Epub 2024 Jun 27.
5
Limitations and potential of κOR biased agonists for pain and itch management.
Neuropharmacology. 2024 Nov 1;258:110061. doi: 10.1016/j.neuropharm.2024.110061. Epub 2024 Jul 2.
6
Design and structural validation of peptide-drug conjugate ligands of the kappa-opioid receptor.
Nat Commun. 2023 Dec 6;14(1):8064. doi: 10.1038/s41467-023-43718-w.
8
The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies.
Front Pharmacol. 2022 Jun 20;13:837671. doi: 10.3389/fphar.2022.837671. eCollection 2022.
9
Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors.
RSC Med Chem. 2021 Apr 21;12(6):828-870. doi: 10.1039/d1md00041a. eCollection 2021 Jun 23.

本文引用的文献

1
A κ Opioid Pharmacophore Becomes a Spinally Selective κ-δ Agonist When Modified with a Basic Extender Arm.
ACS Med Chem Lett. 2010 Oct 27;2(1):7-10. doi: 10.1021/ml1001294. eCollection 2011 Jan 13.
2
Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6811-6. doi: 10.1073/pnas.1015248108. Epub 2011 Mar 11.
3
Seeking Ligand Bias: Assessing GPCR Coupling to Beta-Arrestins for Drug Discovery.
Drug Discov Today Technol. 2010 Spring;7(1):e37-e42. doi: 10.1016/j.ddtec.2010.06.005.
4
Chemical probes for biological systems.
Drug Discov Today. 2011 Feb;16(3-4):99-106. doi: 10.1016/j.drudis.2010.11.004. Epub 2010 Nov 18.
5
PubChem as a public resource for drug discovery.
Drug Discov Today. 2010 Dec;15(23-24):1052-7. doi: 10.1016/j.drudis.2010.10.003. Epub 2010 Oct 21.
6
Probing the probes: fitness factors for small molecule tools.
Chem Biol. 2010 Jun 25;17(6):561-77. doi: 10.1016/j.chembiol.2010.05.013.
7
The NIH Molecular Libraries Program: identifying chemical probes for new medicines.
Chem Biol. 2010 Jun 25;17(6):549-50. doi: 10.1016/j.chembiol.2010.06.005.
10
The art of the chemical probe.
Nat Chem Biol. 2010 Mar;6(3):159-161. doi: 10.1038/nchembio.296.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验