Cellular and Molecular Neuro-oncology Group, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
Transl Oncol. 2012 Jun;5(3):141-54. doi: 10.1593/tlo.11337. Epub 2012 Jun 1.
Few studies on the biologic and molecular properties of pediatric glioblastoma have been performed. Until now, differential genomic analysis of CD133(+)ve and CD133(-)ve fractions has not been described in pediatric glioma. We hypothesize not only that the presence of CD133 could be the source of tumor resistance but also that maintenance of this molecule by hypoxia dictates cellular and molecular behavior. From a series of human glioblastoma biopsies investigated, only one, IN699 (from a pediatric glioblastoma), generated greater than 4% of the total cell volume as CD133(+)ve cells. Using this pediatric glioblastoma, containing unprecedented high levels of the putative brain tumor stem cell marker CD133, as a study model, we report biologic and molecular characteristics of the parent culture and of CD133(+)ve and CD133(-)ve populations derived therefrom under atmospheric and hypoxic culture conditions. Immunocytochemistry and flow cytometry were performed with antigenic markers known to characterize neural stem cells and associated glioma behavior. Behavioral analysis was carried out using proliferation, adhesion, migration, and invasion assays. Cell cycle analysis and array comparative genomic hybridization were used to assess copy number profiles for parental cells and CD133(+)ve and CD133(-)ve fractions, respectively. With regard to invasion and proliferation, CD133(+)ve and CD133(-)ve fractions were inversely proportional, with a significant increase in invasive propensity within the CD133(-)ve cells (P < .005) and a significant increase in proliferation within CD133(+)ve cells (P < .005). Our observations indicate identical genomic imbalances between CD133(+)ve and CD133(-)ve fractions. Furthermore, our research documents a direct link between decreasing oxygen tension and CD133 expression.
目前针对小儿脑胶质瘤的生物学和分子特性的研究还很少。到目前为止,尚未对小儿脑胶质瘤中 CD133(+)ve 和 CD133(-)ve 亚群进行差异基因组分析。我们假设,CD133 的存在不仅可能是肿瘤耐药的根源,而且缺氧对这种分子的维持决定了细胞和分子行为。在所研究的一系列人脑胶质瘤活检组织中,只有一个(来自小儿脑胶质瘤)的 IN699 产生了超过 4%的总细胞体积作为 CD133(+)ve 细胞。我们利用这个小儿脑胶质瘤作为研究模型,它包含了前所未有的高水平的假定脑肿瘤干细胞标记物 CD133,报告了亲本培养物以及从中衍生的 CD133(+)ve 和 CD133(-)ve 群体在大气和低氧培养条件下的生物学和分子特征。采用免疫细胞化学和流式细胞术检测已知能表征神经干细胞和相关胶质瘤行为的抗原标记物。通过增殖、黏附、迁移和侵袭实验进行行为分析。细胞周期分析和阵列比较基因组杂交用于评估亲本细胞和 CD133(+)ve 和 CD133(-)ve 亚群的拷贝数谱。就侵袭和增殖而言,CD133(+)ve 和 CD133(-)ve 亚群呈反比,CD133(-)ve 细胞的侵袭倾向显著增加(P <.005),CD133(+)ve 细胞的增殖显著增加(P <.005)。我们的观察结果表明 CD133(+)ve 和 CD133(-)ve 亚群之间存在相同的基因组失衡。此外,我们的研究还记录了氧张力降低与 CD133 表达之间的直接联系。