Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
Mutat Res. 2012 Oct-Dec;751(2):158-246. doi: 10.1016/j.mrrev.2012.06.002. Epub 2012 Jun 26.
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
在 DNA 复制和修复过程中,人类细胞中染色体连续性的忠实维持对于防止正常二倍体细胞转化为致癌状态至关重要。高等真核细胞的进化赋予了它们在确保染色体稳定性的分子机制上的大量遗传投资。在哺乳动物和其他脊椎动物细胞中,最小核苷酸序列变化的双链断裂的消除涉及到似乎无休止的大量蛋白质的时空协调,其作用范围从核苷酸水平到核小体组织和染色体结构。DNA DSBs 触发了无数种翻译后修饰,这些修饰改变了催化活性和蛋白质相互作用的特异性:磷酸化、乙酰化、甲基化、泛素化和 SUMO 化,然后在修复完成时逆转这些变化。“多余”的蛋白质募集到损伤部位、功能冗余和替代途径确保了 DSB 修复的极高效率,无论是在数量上还是在质量上。这篇综述试图将过去二十年中出现的 DSB 修复的分子机制信息与以原型试剂电离辐射(IR)产生的 DSB 为重点进行整合。分子研究的指数增长,主要由 RNA 敲低技术驱动,现在揭示了许多基因组稳定性和癌症生物学中的关键蛋白参与者如何执行其交织的任务的轮廓,例如 ATM、ATR、DNA-PK、Chk1、Chk2、PARP1/2/3、53BP1、BRCA1、BRCA2、BLM、RAD51 和 MRE11-RAD50-NBS1 复合物。因此,修复过程与细胞周期进程的复杂协调性质变得明显。这篇综述还尽可能地将分子异常与细胞病理学联系起来,并提供了一个时间关系的框架。