Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan.
Am J Physiol Cell Physiol. 2012 Sep 15;303(6):C595-606. doi: 10.1152/ajpcell.00133.2012. Epub 2012 Jun 27.
Endothelial progenitor cells (EPCs) are mobilized from bone marrow to peripheral blood, and contribute to angiogenesis in tissue. In the process, EPCs are exposed to shear stress generated by blood flow and tissue fluid flow. Our previous study showed that shear stress induces differentiation of mature EPCs in adhesive phenotype into mature endothelial cells and, moreover, arterial endothelial cells. In this study we investigated whether immature EPCs in a circulating phenotype differentiate into mature EPCs in response to shear stress. When floating-circulating phenotype EPCs derived from ex vivo expanded human cord blood were exposed to controlled levels of shear stress in a flow-loading device, the bioactivities of adhesion, migration, proliferation, antiapoptosis, tube formation, and differentiated type of EPC colony formation increased. The surface protein expression rate of the endothelial markers VEGF receptor 1 (VEGF-R1) and -2 (VEGF-R2), VE-cadherin, Tie2, VCAM1, integrin α(v)/β(3), and E-selectin increased in shear-stressed EPCs. The VEGF-R1, VEGF-R2, VE-cadherin, and Tie2 protein increases were dependent on the magnitude of shear stress. The mRNA levels of VEGF-R1, VEGF-R2, VE-cadherin, Tie2, endothelial nitric oxide synthase, matrix metalloproteinase 9, and VEGF increased in shear-stressed EPCs. Inhibitor analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signal transduction pathway is a potent activator of adhesion, proliferation, tube formation, and differentiation in response to shear stress. Western blot analysis revealed that shear stress activated the VEGF-R2 phosphorylation in a ligand-independent manner. These results indicate that shear stress increases differentiation, adhesion, migration, proliferation, antiapoptosis, and vasculogenesis of circulating phenotype EPCs by activation of VEGF-R2 and the PI3K/Akt/mTOR signal transduction pathway.
内皮祖细胞(EPCs)从骨髓动员到外周血,并有助于组织中的血管生成。在此过程中,EPCs 会受到血流和组织液流动产生的剪切力的影响。我们之前的研究表明,剪切力诱导成熟 EPCs 的黏附表型分化为成熟内皮细胞,而且还有动脉内皮细胞。在这项研究中,我们研究了循环表型中的未成熟 EPCs 是否会响应剪切力分化为成熟 EPCs。当源自体外扩增的人脐血的悬浮循环表型 EPC 暴露于流量加载装置中的受控剪切力时,黏附、迁移、增殖、抗凋亡、管形成和分化型 EPC 集落形成的生物活性增加。内皮标记物 VEGF 受体 1(VEGF-R1)和 -2(VEGF-R2)、VE-钙粘蛋白、Tie2、VCAM1、整合素 α(v)/β(3)和 E-选择素的表面蛋白表达率在受剪切力的 EPC 中增加。VEGF-R1、VEGF-R2、VE-钙粘蛋白和 Tie2 蛋白的增加取决于剪切力的大小。VEGF-R1、VEGF-R2、VE-钙粘蛋白、Tie2、内皮型一氧化氮合酶、基质金属蛋白酶 9 和 VEGF 的 mRNA 水平在受剪切力的 EPC 中增加。抑制剂分析表明,磷酸肌醇 3-激酶(PI3K)/Akt/雷帕霉素(mTOR)信号转导通路是响应剪切力促进黏附、增殖、管形成和分化的有效激活剂。Western blot 分析表明,剪切力以配体非依赖的方式激活 VEGF-R2 磷酸化。这些结果表明,剪切力通过激活 VEGF-R2 和 PI3K/Akt/mTOR 信号转导通路增加循环表型 EPCs 的分化、黏附、迁移、增殖、抗凋亡和血管生成。