Suppr超能文献

黄斑色素空间分布和峰值密度的遗传性:一项经典的双胞胎研究。

Heritability of the spatial distribution and peak density of macular pigment: a classical twin study.

机构信息

Centre for Vision and Vascular Science, Queen's University, Belfast, UK.

出版信息

Eye (Lond). 2012 Sep;26(9):1217-25. doi: 10.1038/eye.2012.98. Epub 2012 Jun 29.

Abstract

PURPOSE

To elucidate the heritability of peak density and spatial width of macular pigment (MP) using a Classical Twin Study.

METHODS

Fundus autofluorescence images were obtained at 488 nm from 86 subjects or 43 twin pairs (21 monozygotic (MZ) and 22 dizygotic (DZ)) (27 male, 59 female) aged from 55 to 76 years (mean 62.2 ± 5.3 years). The relative topographic distribution of MP was measured using a grey scale of intensity (0-255 units) in a 7° eccentricity around the fovea. Relative peak MP density (rPMPD) and relative spatial distribution of MP (rSDMP) were used as the main outcome measure in the statistical analysis.

RESULTS

A significantly higher correlation was found within MZ pairs as compared with that within DZ pairs for rPMPD, (r=0.99, 95% confidence interval (95% CI) 0.93 to 1.00) and 0.22, 95% CI -0.34 to 0.71), respectively, suggesting strong heritability of this trait. When rSDMP was compared, there was no significant difference between the correlations within MZ pairs (r=0.48, 95% CI -0.02 to 0.83) and DZ pairs (r=0.63, 95% CI 0.32 to 0.83), thus rSDMP is unlikely to have a considerable heritable component. In addition, there was no difference between any MP parameter when normal maculae were compared with early age-related macular degeneration (AMD) (rPMPD 0.36 vs 0.34, t=1.18 P=0.243, rSDMP 1.75 vs 1.75, t=0.028 P=0.977).

CONCLUSIONS

rPMPD is a strongly heritable trait whereas rSDMP has minimal genetic influence and a greater influence by environmental factors. The presence of macular changes associated with early AMD did not appear to influence any of these pigment parameters.

摘要

目的

通过经典双胞胎研究阐明黄斑色素(MP)的峰值密度和空间宽度的遗传性。

方法

从 86 名受试者或 43 对双胞胎(21 对同卵(MZ)和 22 对异卵(DZ))(27 名男性,59 名女性)中获得 488nm 的眼底自发荧光图像,年龄从 55 至 76 岁(平均 62.2±5.3 岁)。使用 0 至 255 个灰度单位的强度在注视点周围 7°的范围内测量 MP 的相对拓扑分布。相对峰值 MP 密度(rPMPD)和 MP 的相对空间分布(rSDMP)被用作统计分析中的主要结果测量。

结果

与 DZ 对相比,MZ 对的 rPMPD 相关性显著更高,分别为 0.99(95%置信区间(95%CI)0.93 至 1.00)和 0.22(95%CI -0.34 至 0.71),这表明该特征具有很强的遗传性。当比较 rSDMP 时,MZ 对(r=0.48,95%CI -0.02 至 0.83)和 DZ 对(r=0.63,95%CI 0.32 至 0.83)之间的相关性无显著差异,因此 rSDMP 不太可能具有可观的遗传成分。此外,正常黄斑与早期年龄相关性黄斑变性(AMD)相比,任何 MP 参数均无差异(rPMPD 0.36 对 0.34,t=1.18,P=0.243,rSDMP 1.75 对 1.75,t=0.028,P=0.977)。

结论

rPMPD 是一个具有强遗传性的特征,而 rSDMP 的遗传影响很小,环境因素的影响更大。与早期 AMD 相关的黄斑变化的存在似乎并未影响任何这些色素参数。

相似文献

1
Heritability of the spatial distribution and peak density of macular pigment: a classical twin study.
Eye (Lond). 2012 Sep;26(9):1217-25. doi: 10.1038/eye.2012.98. Epub 2012 Jun 29.
2
Heritability of macular pigment: a twin study.
Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4430-6. doi: 10.1167/iovs.05-0519.
3
Spatial profile of macular pigment and its relationship to foveal architecture.
Invest Ophthalmol Vis Sci. 2008 May;49(5):2134-42. doi: 10.1167/iovs.07-0933.
4
Macular pigment: quantitative analysis on autofluorescence images.
Graefes Arch Clin Exp Ophthalmol. 2003 Dec;241(12):1006-12. doi: 10.1007/s00417-003-0796-4. Epub 2003 Nov 14.
5
Candidate gene study of macular response to supplemental lutein and zeaxanthin.
Exp Eye Res. 2013 Oct;115:172-7. doi: 10.1016/j.exer.2013.07.020. Epub 2013 Jul 25.
6
Repeatability of the macular pigment spatial profile: A comparison of objective versus subjective classification.
Acta Ophthalmol. 2018 Nov;96(7):e797-e803. doi: 10.1111/aos.13725. Epub 2018 Aug 29.
7
The association of retinal structure and macular pigment distribution.
Invest Ophthalmol Vis Sci. 2014 Feb 26;55(2):1169-75. doi: 10.1167/iovs.13-12903.
8
Central serous chorioretinopathy produces macular pigment profile changes.
Optom Vis Sci. 2013 Jul;90(7):e206-12. doi: 10.1097/OPX.0b013e318299386e.
9
The heritability of the ring-like distribution of macular pigment assessed in a twin study.
Invest Ophthalmol Vis Sci. 2014 Apr 7;55(4):2214-9. doi: 10.1167/iovs.13-13829.
10
Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery.
Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4777-85. doi: 10.1167/iovs.08-3277. Epub 2009 Jul 23.

引用本文的文献

1
Influence of Dietary Habits on Macular Pigment in Childhood.
J Clin Med. 2025 Apr 14;14(8):2668. doi: 10.3390/jcm14082668.
3
Spatial and spatio-temporal statistical analyses of retinal images: a review of methods and applications.
BMJ Open Ophthalmol. 2020 May 28;5(1):e000479. doi: 10.1136/bmjophth-2020-000479. eCollection 2020.
5
Relative Genetic and Environmental Contributions to Variations in Human Retinal Electrical Responses Quantified in a Twin Study.
Ophthalmology. 2017 Aug;124(8):1175-1185. doi: 10.1016/j.ophtha.2017.03.017. Epub 2017 Apr 20.
6
Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration.
Am J Clin Nutr. 2014 Jul;100 Suppl 1(1):336S-46S. doi: 10.3945/ajcn.113.071563. Epub 2014 May 14.
7
The heritability of the ring-like distribution of macular pigment assessed in a twin study.
Invest Ophthalmol Vis Sci. 2014 Apr 7;55(4):2214-9. doi: 10.1167/iovs.13-13829.
8
The use of heterochromatic flicker photometry to determine macular pigment optical density in a healthy Australian population.
Graefes Arch Clin Exp Ophthalmol. 2014 Mar;252(3):417-21. doi: 10.1007/s00417-013-2554-6. Epub 2014 Jan 5.
9
Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study.
Invest Ophthalmol Vis Sci. 2013 Mar 28;54(3):2333-45. doi: 10.1167/iovs.12-10867.

本文引用的文献

2
Effect of cataract in evaluation of macular pigment optical density by autofluorescence spectrometry.
Invest Ophthalmol Vis Sci. 2011 Feb 16;52(2):927-32. doi: 10.1167/iovs.10-5664.
3
Purification and partial characterization of a lutein-binding protein from human retina.
Biochemistry. 2009 Jun 9;48(22):4798-807. doi: 10.1021/bi9004478.
4
Gene-environment interactions and aging visual function: a classical twin study.
Ophthalmology. 2009 Feb;116(2):263-9. doi: 10.1016/j.ophtha.2008.09.002. Epub 2008 Nov 18.
5
Foveal anatomic associations with the secondary peak and the slope of the macular pigment spatial profile.
Invest Ophthalmol Vis Sci. 2009 Mar;50(3):1383-91. doi: 10.1167/iovs.08-2494. Epub 2008 Oct 20.
6
Further assessment of the complement component 2 and factor B region associated with age-related macular degeneration.
Invest Ophthalmol Vis Sci. 2009 Feb;50(2):533-9. doi: 10.1167/iovs.08-2275. Epub 2008 Sep 20.
7
Spatial profile of macular pigment and its relationship to foveal architecture.
Invest Ophthalmol Vis Sci. 2008 May;49(5):2134-42. doi: 10.1167/iovs.07-0933.
8
Resonance Raman imaging of macular pigment distributions in the human retina.
J Opt Soc Am A Opt Image Sci Vis. 2008 Apr;25(4):947-57. doi: 10.1364/josaa.25.000947.
9
Transport and retinal capture of lutein and zeaxanthin with reference to age-related macular degeneration.
Surv Ophthalmol. 2008 Jan-Feb;53(1):68-81. doi: 10.1016/j.survophthal.2007.10.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验