Suppr超能文献

果蝇神经异常碳水化合物突变体有一种缺陷的高尔基体 GDP-岩藻糖转运蛋白。

The Drosophila neurally altered carbohydrate mutant has a defective Golgi GDP-fucose transporter.

机构信息

Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.

出版信息

J Biol Chem. 2012 Aug 24;287(35):29599-609. doi: 10.1074/jbc.M112.379313. Epub 2012 Jun 28.

Abstract

Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac(1) flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mistargeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac(1) mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac(1) Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac(1) mutant. These results validate the Drosophila nac(1) mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency.

摘要

在模式生物中研究遗传疾病可以深入了解可遗传的人类疾病。果蝇神经改变碳水化合物(nac)突变体缺乏 HRP 表位的神经表达,该表位由具有核心α1,3 连接岩藻糖残基的 N-聚糖组成。在这里,我们表明,Golgi GDP-岩藻糖转运蛋白(GFR)中的一个保守丝氨酸残基在 nac(1) 果蝇中被亮氨酸取代,这在体内和体外都废除了 GDP-岩藻糖的转运。这种功能丧失是由于生化缺陷,而不是突变体 GFR 蛋白的不稳定性或靶向错误。质谱和 HPLC 分析表明,nac(1) 突变体不仅缺乏核心α1,3 连接的岩藻糖,而且缺乏核心α1,6 连接的岩藻糖残基。因此,nac(1) Gfr 突变产生了以前未被认识的 N-聚糖核心岩藻糖基化普遍缺陷。野生型 Gfr 基因的转基因表达恢复了神经组织中的 HRP 表位,直接证明 Gfr 突变是 nac(1) 突变体中神经 HRP 表位缺乏的唯一原因。这些结果验证了果蝇 nac(1) 突变体是人类先天性糖基化紊乱(CDG-IIc,也称为 LAD-II)的模型,其也是 GFR 缺乏的结果。

相似文献

引用本文的文献

9
Understanding human glycosylation disorders: biochemistry leads the charge.理解人类糖基化紊乱:生物化学引领研究。
J Biol Chem. 2013 Mar 8;288(10):6936-45. doi: 10.1074/jbc.R112.429274. Epub 2013 Jan 17.

本文引用的文献

1
Neurology of inherited glycosylation disorders.遗传性糖基化障碍的神经病学。
Lancet Neurol. 2012 May;11(5):453-66. doi: 10.1016/S1474-4422(12)70040-6.
4
Mouse models for congenital disorders of glycosylation.先天性糖基化障碍的小鼠模型。
J Inherit Metab Dis. 2011 Aug;34(4):879-89. doi: 10.1007/s10545-011-9295-7. Epub 2011 Feb 24.
5
Congenital disorders of glycosylation.先天性糖基化障碍。
Ann N Y Acad Sci. 2010 Dec;1214:190-8. doi: 10.1111/j.1749-6632.2010.05840.x.
7
Metabolic manipulation of glycosylation disorders in humans and animal models.人类和动物模型中糖基化紊乱的代谢操纵。
Semin Cell Dev Biol. 2010 Aug;21(6):655-62. doi: 10.1016/j.semcdb.2010.03.011. Epub 2010 Apr 2.
10
CDG nomenclature: time for a change!先天性糖基化障碍命名法:是时候改变了!
Biochim Biophys Acta. 2009 Sep;1792(9):825-6. doi: 10.1016/j.bbadis.2009.08.005.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验