Iiritano Stefania, Chiefari Eusebio, Ventura Valeria, Arcidiacono Biagio, Possidente Katiuscia, Nocera Aurora, Nevolo Maria T, Fedele Monica, Greco Adelaide, Greco Manfredi, Brunetti Giuseppe, Fusco Alfredo, Foti Daniela, Brunetti Antonio
Dipartimento di Scienze della Salute, Università di Catanzaro Magna Græcia, 88100 Catanzaro, Italy.
Mol Endocrinol. 2012 Sep;26(9):1578-89. doi: 10.1210/me.2011-1379. Epub 2012 Jun 28.
We previously showed that loss of the high mobility group A1 (HMGA1) protein expression, induced in mice by disrupting the Hmga1 gene, considerably decreased insulin receptor expression in the major target tissues of insulin action, causing a type 2-like diabetic phenotype, in which, however, glucose intolerance was paradoxically associated with increased peripheral insulin sensitivity. Insulin hypersensitivity despite impairment of insulin action supports the existence of molecular adaptation mechanisms promoting glucose disposal via insulin-independent processes. Herein, we provide support for these compensatory pathways/circuits of glucose uptake in vivo, the activation of which under certain adverse metabolic conditions may protect against hyperglycemia. Using chromatin immunoprecipitation combined with protein-protein interaction studies of nuclear proteins in vivo, and transient transcription assays in living cells, we show that HMGA1 is required for gene activation of the IGF-binding proteins 1 (IGFBP1) and 3 (IGFBP3), two major members of the IGF-binding protein superfamily. Furthermore, by using positron emission tomography with (18)F-labeled 2-fluoro-2-deoxy-d-glucose, in combination with the euglycemic clamp with IGF-I, we demonstrated that IGF-I's bioactivity was increased in Hmga1-knockout mice, in which both skeletal muscle Glut4 protein expression and glucose uptake were enhanced compared with wild-type littermates. We propose that, by affecting the expression of both IGFBP protein species, HMGA1 can serve as a modulator of IGF-I activity, thus representing an important novel mediator of glucose disposal.
我们之前的研究表明,通过破坏Hmga1基因在小鼠中诱导高迁移率族蛋白A1(HMGA1)蛋白表达缺失,会显著降低胰岛素作用的主要靶组织中的胰岛素受体表达,导致类似2型糖尿病的表型,然而,在这种表型中,葡萄糖不耐受与外周胰岛素敏感性增加自相矛盾地相关。尽管胰岛素作用受损,但胰岛素超敏反应支持存在通过非胰岛素依赖过程促进葡萄糖处置的分子适应机制。在此,我们为体内这些葡萄糖摄取的代偿途径/回路提供了支持,在某些不利的代谢条件下激活这些途径/回路可能预防高血糖。通过体内染色质免疫沉淀结合核蛋白的蛋白质-蛋白质相互作用研究以及活细胞中的瞬时转录分析,我们表明HMGA1是胰岛素样生长因子结合蛋白1(IGFBP1)和3(IGFBP3)基因激活所必需的,这两个蛋白是胰岛素样生长因子结合蛋白超家族的两个主要成员。此外,通过使用正电子发射断层扫描结合(18)F标记的2-氟-2-脱氧-D-葡萄糖,并结合使用IGF-I的正常血糖钳夹技术,我们证明在Hmga1基因敲除小鼠中IGF-I的生物活性增加,与野生型同窝小鼠相比,其骨骼肌中Glut4蛋白表达和葡萄糖摄取均增强。我们提出,通过影响两种IGFBP蛋白的表达,HMGA1可以作为IGF-I活性的调节剂,因此代表了葡萄糖处置的一种重要的新型介质。