Suppr超能文献

抗癌化疗的合理药物设计:用于发现抗结直肠癌药物的多靶标 QSAR 模型。

Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents.

机构信息

REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, Porto 4169-007, Portugal.

出版信息

Bioorg Med Chem. 2012 Aug 1;20(15):4848-55. doi: 10.1016/j.bmc.2012.05.071. Epub 2012 Jun 15.

Abstract

The discovery of new and more potent anti-cancer agents constitutes one of the most active fields of research in chemotherapy. Colorectal cancer (CRC) is one of the most studied cancers because of its high prevalence and number of deaths. In the current pharmaceutical design of more efficient anti-CRC drugs, the use of methodologies based on Chemoinformatics has played a decisive role, including Quantitative-Structure-Activity Relationship (QSAR) techniques. However, until now, there is no methodology able to predict anti-CRC activity of compounds against more than one CRC cell line, which should constitute the principal goal. In an attempt to overcome this problem we develop here the first multi-target (mt) approach for the virtual screening and rational in silico discovery of anti-CRC agents against ten cell lines. Here, two mt-QSAR classification models were constructed using a large and heterogeneous database of compounds. The first model was based on linear discriminant analysis (mt-QSAR-LDA) employing fragment-based descriptors while the second model was obtained using artificial neural networks (mt-QSAR-ANN) with global 2D descriptors. Both models correctly classified more than 90% of active and inactive compounds in training and prediction sets. Some fragments were extracted from the molecules and their contributions to anti-CRC activity were calculated using mt-QSAR-LDA model. Several fragments were identified as potential substructural features responsible for the anti-CRC activity and new molecules designed from those fragments with positive contributions were suggested and correctly predicted by the two models as possible potent and versatile anti-CRC agents.

摘要

新的、更有效的抗癌药物的发现是化疗研究中最活跃的领域之一。结直肠癌(CRC)是研究最多的癌症之一,因为它的发病率和死亡率都很高。在当前更有效的抗 CRC 药物的药物设计中,基于 Chemoinformatics 的方法学的使用发挥了决定性作用,包括定量构效关系(QSAR)技术。然而,到目前为止,还没有一种方法能够预测化合物对一种以上 CRC 细胞系的抗 CRC 活性,这应该是主要目标。为了克服这个问题,我们在这里开发了第一个针对十种细胞系的虚拟筛选和合理的抗 CRC 药物的多靶(mt)方法。在这里,使用一个大型的、异构的化合物数据库构建了两个 mt-QSAR 分类模型。第一个模型基于线性判别分析(mt-QSAR-LDA),使用基于片段的描述符,而第二个模型则是使用人工神经网络(mt-QSAR-ANN)和全局 2D 描述符获得的。这两个模型都正确地对训练集和预测集的活性和非活性化合物进行了分类,准确率超过 90%。从分子中提取了一些片段,并使用 mt-QSAR-LDA 模型计算了它们对抗 CRC 活性的贡献。确定了一些片段作为潜在的结构特征,负责抗 CRC 活性,并从具有正贡献的片段设计了新的分子,这两个模型都正确地预测了这些新分子可能是潜在的、多功能的抗 CRC 药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验