Suppr超能文献

预测全氟和多氟烷基物质(PFAS)对人甲状腺素转运蛋白干扰作用的新型定量构效关系模型:开发与应用

New QSAR Models to Predict Human Transthyretin Disruption by Per- and Polyfluoroalkyl Substances (PFAS): Development and Application.

作者信息

Evangelista Marco, Chirico Nicola, Papa Ester

机构信息

QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.

Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy.

出版信息

Toxics. 2025 Jul 14;13(7):590. doi: 10.3390/toxics13070590.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are of concern because of their potential thyroid hormone system disruption by binding to human transthyretin (hTTR). However, the amount of experimental data is scarce. In this work, new classification and regression QSARs were developed to predict the hTTR disruption based on experimental data measured for 134 PFAS. Bootstrapping, randomization procedures, and external validation were used to check for overfitting, to avoid random correlations, and to evaluate the predictivity of the QSARs, respectively. The best QSARs were characterized by good performances (e.g., training and test accuracies in classification of 0.89 and 0.85, respectively; R, Q, and Q in regression of 0.81, 0.77, and 0.82, respectively) and significantly broader domains compared to the few existing similar models. The application of QSARs application to the OECD List of PFAS allowed for the identification of structural categories of major concern, such as per- and polyfluoroalkyl ether-based, perfluoroalkyl carbonyl, and perfluoroalkane sulfonyl compounds. Forty-nine PFAS showed a stronger binding affinity to hTTR than the natural ligand T4. Uncertainty quantification for each model and prediction further enhanced the reliability assessment of predictions. The implementation of the new QSARs in non-commercial software facilitates their application to support future research efforts and regulatory actions.

摘要

全氟和多氟烷基物质(PFAS)令人担忧,因为它们可能通过与人转甲状腺素蛋白(hTTR)结合而干扰甲状腺激素系统。然而,实验数据的数量很少。在这项工作中,基于对134种PFAS测量的实验数据,开发了新的分类和回归定量构效关系(QSAR)来预测hTTR干扰。分别使用自举法、随机化程序和外部验证来检查过拟合、避免随机相关性以及评估QSAR的预测能力。最佳的QSAR表现良好(例如,分类中的训练和测试准确率分别为0.89和0.85;回归中的R、Q和Q分别为0.81、0.77和0.82),并且与现有的少数类似模型相比,其适用范围明显更广。将QSAR应用于经合组织PFAS清单可识别主要关注的结构类别,例如全氟和多氟烷基醚基、全氟烷基羰基和全氟烷磺酰化合物。49种PFAS对hTTR的结合亲和力比天然配体T4更强。每个模型的不确定性量化和预测进一步增强了预测的可靠性评估。在非商业软件中实施新的QSAR有助于其应用,以支持未来的研究工作和监管行动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d859/12300718/7a5db014e2c9/toxics-13-00590-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验