Owen Robin L, Axford Danny, Nettleship Joanne E, Owens Raymond J, Robinson James I, Morgan Ann W, Doré Andrew S, Lebon Guillaume, Tate Christopher G, Fry Elizabeth E, Ren Jingshan, Stuart David I, Evans Gwyndaf
Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England.
Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):810-8. doi: 10.1107/S0907444912012553. Epub 2012 Jun 15.
A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A(2A) adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.
据报道,通过使用高亮度X射线束、缩短曝光时间和快速读出探测器,室温下大分子晶体的寿命显著增加。这归因于能够在羟基自由基传播通过晶体并致命地破坏晶格之前收集衍射数据。研究表明,羟基自由基在100K时被困在非晶态溶液中。在可溶性蛋白质(免疫球蛋白γ Fc受体IIIa)、病毒(牛肠道病毒2型)和膜蛋白(人A(2A)腺苷G蛋白偶联受体)的晶体中观察到了晶体寿命的这种趋势。在所有这三个系统中观察到类似的效果,为室温数据收集的通用最佳策略提供了明确证据,并将为未来大分子晶体学的同步加速器光束线和探测器设计提供参考。