Suppr超能文献

c-Jun N-末端激酶对 MARCKSL1 的磷酸化作用决定了神经元和癌细胞中的肌动蛋白稳定性和迁移。

c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells.

机构信息

Turku Centre for Biotechnology, Åbo Akademi and University of Turku, BioCity, Turku, Finland.

出版信息

Mol Cell Biol. 2012 Sep;32(17):3513-26. doi: 10.1128/MCB.00713-12. Epub 2012 Jul 2.

Abstract

Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1(S120D,T148D,T183D)) inhibits whereas dephospho-MARCKSL1(S120A,T148A,T183A) induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.

摘要

细胞迁移是一种基本的生物学功能,在发育和再生过程中至关重要,而失调的迁移则是神经发育缺陷和癌症转移的基础。MARCKS 样蛋白 1(MARCKSL1)广泛表达于神经组织中,与 Jun 氨基末端蛋白激酶(JNK)一样,它是神经管形成所必需的,但其机制尚不清楚。本文中我们发现 JNK 可在 MARCKSL1 的 C 端残基(S120、T148 和 T183)上对其进行直接磷酸化。这种磷酸化使 MARCKSL1 能够束集并稳定 F-肌动蛋白,增加丝状伪足的数量和动力学,并在神经元中延缓迁移。相反,当 MARCKSL1 磷酸化被抑制时,肌动蛋白的流动性增加,丝状伪足的形成受损,而片状伪足的形成增强,细胞迁移也随之增强。我们发现 MARCKSL1 mRNA 在广泛的癌症类型中上调,并且 MARCKSL1 蛋白在原发性前列腺癌中强烈诱导。在前列腺癌细胞或神经元中的基因敲低揭示了 MARCKSL1 在迁移中的关键作用,该作用依赖于其磷酸化状态;磷酸化 MARCKSL1(MARCKSL1(S120D、T148D、T183D))抑制迁移,而去磷酸化 MARCKSL1(MARCKSL1(S120A、T148A、T183A))则诱导迁移。总之,这些数据表明,JNK 对 MARCKSL1 的磷酸化调节肌动蛋白的动态平衡、丝状伪足和片状伪足的形成以及生理条件下神经元的迁移,并且在前列腺癌细胞中异位表达时,MARCKSL1 再次决定细胞的运动。

相似文献

1
c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells.
Mol Cell Biol. 2012 Sep;32(17):3513-26. doi: 10.1128/MCB.00713-12. Epub 2012 Jul 2.
3
MARCKS and MARCKS-like proteins in development and regeneration.
J Biomed Sci. 2018 May 22;25(1):43. doi: 10.1186/s12929-018-0445-1.
4
Paxillin is the target of c-Jun N-terminal kinase in Schwann cells and regulates migration.
Cell Signal. 2012 Nov;24(11):2061-9. doi: 10.1016/j.cellsig.2012.06.013. Epub 2012 Jun 30.
5
Emerging role of microRNAs as regulators of protein kinase C substrate MARCKS and MARCKSL1 in cancer.
Exp Cell Res. 2024 Jan 15;434(2):113891. doi: 10.1016/j.yexcr.2023.113891. Epub 2023 Dec 16.
9
Loss of Dlg5 expression promotes the migration and invasion of prostate cancer cells via Girdin phosphorylation.
Oncogene. 2015 Feb 26;34(9):1141-9. doi: 10.1038/onc.2014.31. Epub 2014 Mar 24.

引用本文的文献

1
Rapid Microwave Fixation of the Brain Reveals Seasonal Changes in the Phosphoproteome of Hibernating Thirteen-Lined Ground Squirrels.
ACS Chem Neurosci. 2025 Feb 5;16(3):428-438. doi: 10.1021/acschemneuro.4c00635. Epub 2025 Jan 22.
2
Defects in hair cells disrupt the development of auditory peripheral circuitry.
Nat Commun. 2024 Dec 30;15(1):10899. doi: 10.1038/s41467-024-55275-x.
3
Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology.
Curr Issues Mol Biol. 2024 Dec 5;46(12):13811-13845. doi: 10.3390/cimb46120826.
4
Molecules That Have Rarely Been Studied in Lymphatic Endothelial Cells.
Int J Mol Sci. 2024 Nov 14;25(22):12226. doi: 10.3390/ijms252212226.
5
The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy.
J Mol Med (Berl). 2024 Nov;102(11):1297-1314. doi: 10.1007/s00109-024-02488-8. Epub 2024 Sep 17.
6
An integrated approach identifies the molecular underpinnings of murine anterior visceral endoderm migration.
Dev Cell. 2024 Sep 9;59(17):2347-2363.e9. doi: 10.1016/j.devcel.2024.05.014. Epub 2024 Jun 5.
8
Axonal endoplasmic reticulum tubules control local translation via P180/RRBP1-mediated ribosome interactions.
Dev Cell. 2024 Aug 19;59(16):2053-2068.e9. doi: 10.1016/j.devcel.2024.05.005. Epub 2024 May 29.
9
Differential Proteomic Analysis of Low-Dose Chronic Paralytic Shellfish Poisoning.
Mar Drugs. 2024 Feb 26;22(3):108. doi: 10.3390/md22030108.
10
A glimpse into novel acylations and their emerging role in regulating cancer metastasis.
Cell Mol Life Sci. 2024 Feb 5;81(1):76. doi: 10.1007/s00018-023-05104-z.

本文引用的文献

1
The prognostic value of MARCKS-like 1 in lymph node-negative breast cancer.
Breast Cancer Res Treat. 2012 Sep;135(2):381-90. doi: 10.1007/s10549-012-2155-9. Epub 2012 Jul 8.
2
Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate.
Nat Neurosci. 2011 Mar;14(3):305-13. doi: 10.1038/nn.2755. Epub 2011 Feb 6.
3
Contribution of Filopodia to Cell Migration: A Mechanical Link between Protrusion and Contraction.
Int J Cell Biol. 2010;2010:507821. doi: 10.1155/2010/507821. Epub 2010 Jul 6.
5
Novel biomarkers for prostate cancer including noncoding transcripts.
Am J Pathol. 2009 Dec;175(6):2264-76. doi: 10.2353/ajpath.2009.080868. Epub 2009 Nov 5.
7
Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin.
Nat Neurosci. 2009 Jul;12(7):864-71. doi: 10.1038/nn.2346. Epub 2009 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验