Suppr超能文献

磷酸化 SCG10/stathmin-2 决定了多极期退出和神经元迁移率。

Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate.

机构信息

Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Turku, Finland.

出版信息

Nat Neurosci. 2011 Mar;14(3):305-13. doi: 10.1038/nn.2755. Epub 2011 Feb 6.

Abstract

Cell migration is the consequence of the sum of positive and negative regulatory mechanisms. Although appropriate migration of neurons is a principal feature of brain development, the negative regulatory mechanisms remain obscure. We found that JNK1 was highly active in developing cortex and that selective inhibition of JNK in the cytoplasm markedly increased both the frequency of exit from the multipolar stage and radial migration rate and ultimately led to an ill-defined cellular organization. Moreover, regulation of multipolar-stage exit and radial migration in Jnk1(-/-) (also known as Mapk8) mice, resulted from consequential changes in phosphorylation of the microtubule regulator SCG10 (also called stathmin-2). Expression of an SCG10 mutant that mimics the JNK1-phosphorylated form restored normal migration in the brains of Jnk1(-/-) mouse embryos. These findings indicate that the phosphorylation of SCG10 by JNK1 is a fundamental mechanism that governs the transition from the multipolar stage and the rate of neuronal cell movement during cortical development.

摘要

细胞迁移是正、负调控机制综合作用的结果。尽管神经元的适当迁移是大脑发育的主要特征,但负调控机制仍不清楚。我们发现 JNK1 在发育中的皮质中高度活跃,细胞质中 JNK 的选择性抑制显著增加了离开多极阶段的频率和放射状迁移率,最终导致细胞结构不清晰。此外,Jnk1(-/-)(也称为 Mapk8)小鼠中多极阶段退出和放射状迁移的调节,是由于微管调节因子 SCG10(也称为 stathmin-2)的磷酸化的后续变化所致。模拟 JNK1 磷酸化形式的 SCG10 突变体的表达恢复了 Jnk1(-/-) 小鼠胚胎大脑中的正常迁移。这些发现表明,JNK1 对 SCG10 的磷酸化是控制从多极阶段过渡和皮质发育过程中神经元细胞运动速度的基本机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验