Suppr超能文献

在呼吸机诱导和内毒素性肺损伤期间,对参与 2-脱氧-2-[(18)F]氟-D-葡萄糖摄取的细胞类型进行微放射性自显影评估。

Micro-autoradiographic assessment of cell types contributing to 2-deoxy-2-[(18)F]fluoro-D-glucose uptake during ventilator-induced and endotoxemic lung injury.

机构信息

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA.

出版信息

Mol Imaging Biol. 2013 Feb;15(1):19-27. doi: 10.1007/s11307-012-0575-x.

Abstract

PURPOSE

The aim of the study was to use micro-autoradiography to investigate the lung cell types responsible for 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake in murine models of acute lung injury (ALI).

PROCEDURES

C57/BL6 mice were studied in three groups: controls, ventilator-induced lung injury (VILI), and endotoxin. VILI was produced by high tidal volumes and zero end-expiratory pressure and endotoxin ALI, by intranasal administration. Following FDG injection, the lungs were processed and exposed to autoradiographic emulsion. Grain density over cells was used to quantify FDG uptake.

RESULTS

Neutrophils, macrophages, and type 2 epithelial cells presented higher grain densities during VILI and endotoxin ALI than controls. Remarkably, cell grain density in specific cell types was dependent on the injury mechanism. Whereas macrophages showed high grain densities during endotoxin ALI, similar to those exhibited by neutrophils, type 2 epithelial cells demonstrated the second highest grain density (with neutrophils as the highest) during VILI.

CONCLUSIONS

In murine models of VILI and endotoxin ALI, FDG uptake occurs not only in neutrophils but also in macrophages and type 2 epithelial cells. FDG uptake by individual cell types depends on the mechanism underlying ALI.

摘要

目的

本研究旨在使用微量放射自显影技术来研究在急性肺损伤(ALI)的小鼠模型中,负责摄取 2-脱氧-2-[(18)F]氟-D-葡萄糖(FDG)的肺细胞类型。

方法

本研究共纳入三组 C57/BL6 小鼠:对照组、呼吸机诱导性肺损伤(VILI)组和内毒素组。VILI 组通过大潮气量和零呼气末正压通气来产生,内毒素 ALI 组则通过鼻腔内给予内毒素来产生。注射 FDG 后,对肺组织进行处理并暴露于放射自显影乳胶中。通过细胞上的颗粒密度来定量 FDG 摄取。

结果

在 VILI 和内毒素 ALI 中,与对照组相比,中性粒细胞、巨噬细胞和 2 型上皮细胞的颗粒密度更高。值得注意的是,特定细胞类型的细胞颗粒密度取决于损伤机制。在内毒素 ALI 中,巨噬细胞表现出高颗粒密度,与中性粒细胞相似,但在 VILI 中,2 型上皮细胞表现出第二高的颗粒密度(仅次于中性粒细胞)。

结论

在 VILI 和内毒素 ALI 的小鼠模型中,FDG 摄取不仅发生在中性粒细胞中,也发生在巨噬细胞和 2 型上皮细胞中。个体细胞类型的 FDG 摄取取决于 ALI 的发生机制。

相似文献

2
Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding.
Am J Respir Cell Mol Biol. 2015 Feb;52(2):193-204. doi: 10.1165/rcmb.2013-0347OC.
4
F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury.
Nucl Med Biol. 2017 May;48:52-62. doi: 10.1016/j.nucmedbio.2017.01.005. Epub 2017 Jan 17.
6
Positron emission tomography: a tool for better understanding of ventilator-induced and acute lung injury.
Curr Opin Crit Care. 2011 Feb;17(1):7-12. doi: 10.1097/MCC.0b013e32834272ab.
9
18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome.
J Nucl Med. 2014 Nov;55(11):1871-7. doi: 10.2967/jnumed.114.140962. Epub 2014 Oct 6.
10
Deterioration of Regional Lung Strain and Inflammation during Early Lung Injury.
Am J Respir Crit Care Med. 2018 Oct 1;198(7):891-902. doi: 10.1164/rccm.201710-2038OC.

引用本文的文献

1
Molecular imaging of inflammation with PET in acute and ventilator-induced lung injury.
Front Physiol. 2023 Jun 29;14:1177717. doi: 10.3389/fphys.2023.1177717. eCollection 2023.
2
Worsening of lung perfusion to tissue density distributions during early acute lung injury.
J Appl Physiol (1985). 2023 Aug 1;135(2):239-250. doi: 10.1152/japplphysiol.00028.2023. Epub 2023 Jun 8.
3
Novel STING-targeted PET radiotracer for alert and therapeutic evaluation of acute lung injury.
Acta Pharm Sin B. 2023 May;13(5):2124-2137. doi: 10.1016/j.apsb.2022.12.017. Epub 2022 Dec 28.
4
Pathogenesis of ventilator-induced lung injury: metabolomics analysis of the lung and plasma.
Metabolomics. 2022 Aug 4;18(8):66. doi: 10.1007/s11306-022-01914-7.
5
Imaging the acute respiratory distress syndrome: past, present and future.
Intensive Care Med. 2022 Aug;48(8):995-1008. doi: 10.1007/s00134-022-06809-8. Epub 2022 Jul 14.
8
Overview of positron emission tomography in functional imaging of the lungs for diffuse lung diseases.
Br J Radiol. 2022 Apr 1;95(1132):20210824. doi: 10.1259/bjr.20210824. Epub 2021 Nov 9.
9
Ventilator-induced lung-injury in mouse models: Is there a trap?
Lab Anim Res. 2021 Oct 29;37(1):30. doi: 10.1186/s42826-021-00108-x.
10
Selective Imaging of Lung Macrophages Using [C]PBR28-Based Positron Emission Tomography.
Mol Imaging Biol. 2021 Dec;23(6):905-913. doi: 10.1007/s11307-021-01617-w. Epub 2021 Jun 16.

本文引用的文献

1
Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation.
J Appl Physiol (1985). 2011 Nov;111(5):1249-58. doi: 10.1152/japplphysiol.00311.2011. Epub 2011 Jul 28.
2
Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury.
Am J Respir Crit Care Med. 2011 May 1;183(9):1193-9. doi: 10.1164/rccm.201008-1318OC. Epub 2011 Jan 21.
3
Contribution of neutrophils to acute lung injury.
Mol Med. 2011 Mar-Apr;17(3-4):293-307. doi: 10.2119/molmed.2010.00138. Epub 2010 Oct 18.
4
Assessment of lung inflammation with 18F-FDG PET during acute lung injury.
AJR Am J Roentgenol. 2010 Aug;195(2):292-300. doi: 10.2214/AJR.10.4499.
5
New developments in lung endothelial heterogeneity: Von Willebrand factor, P-selectin, and the Weibel-Palade body.
Semin Thromb Hemost. 2010 Apr;36(3):301-8. doi: 10.1055/s-0030-1253452. Epub 2010 May 20.
7
[18F]fluorodeoxyglucose positron emission tomography for lung antiinflammatory response evaluation.
Am J Respir Crit Care Med. 2009 Sep 15;180(6):533-9. doi: 10.1164/rccm.200904-0501OC. Epub 2009 Jul 2.
8
FDG-PET in patients at risk for acute respiratory distress syndrome: a preliminary report.
Intensive Care Med. 2008 Dec;34(12):2273-8. doi: 10.1007/s00134-008-1220-7. Epub 2008 Aug 6.
9
Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury.
Anesthesiology. 2007 Apr;106(4):723-35. doi: 10.1097/01.anes.0000264748.86145.ac.
10
Glucose transport in the lung and its role in liquid movement.
Respir Physiol Neurobiol. 2007 Dec 15;159(3):331-7. doi: 10.1016/j.resp.2007.02.014. Epub 2007 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验