Suppr超能文献

与囊性纤维化患者稳定相关的链球菌流行率和增加的多微生物多样性。

Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability.

机构信息

Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.

出版信息

J Bacteriol. 2012 Sep;194(17):4709-17. doi: 10.1128/JB.00566-12. Epub 2012 Jun 29.

Abstract

Diverse microbial communities chronically colonize the lungs of cystic fibrosis patients. Pyrosequencing of amplicons for hypervariable regions in the 16S rRNA gene generated taxonomic profiles of bacterial communities for sputum genomic DNA samples from 22 patients during a state of clinical stability (outpatients) and 13 patients during acute exacerbation (inpatients). We employed quantitative PCR (qPCR) to confirm the detection of Pseudomonas aeruginosa and Streptococcus by the pyrosequencing data and human oral microbe identification microarray (HOMIM) analysis to determine the species of the streptococci identified by pyrosequencing. We show that outpatient sputum samples have significantly higher bacterial diversity than inpatients, but maintenance treatment with tobramycin did not impact overall diversity. Contrary to the current dogma in the field that Pseudomonas aeruginosa is the dominant organism in the majority of cystic fibrosis patients, Pseudomonas constituted the predominant genera in only half the patient samples analyzed and reported here. The increased fractional representation of Streptococcus in the outpatient cohort relative to the inpatient cohort was the strongest predictor of clinically stable lung disease. The most prevalent streptococci included species typically associated with the oral cavity (Streptococcus salivarius and Streptococcus parasanguis) and the Streptococcus milleri group species. These species of Streptococcus may play an important role in increasing the diversity of the cystic fibrosis lung environment and promoting patient stability.

摘要

囊性纤维化患者的肺部长期定植着多样化的微生物群落。对 16S rRNA 基因高变区的扩增子进行焦磷酸测序,为 22 名处于临床稳定期(门诊)和 13 名处于急性加重期(住院)的患者的痰基因组 DNA 样本生成了细菌群落的分类图谱。我们采用定量 PCR(qPCR)来验证焦磷酸测序数据中铜绿假单胞菌和链球菌的检测,并用人口腔微生物鉴定微阵列(HOMIM)分析来确定焦磷酸测序鉴定的链球菌的种属。结果显示,门诊患者的痰样本具有显著更高的细菌多样性,但妥布霉素维持治疗并未对整体多样性产生影响。与当前该领域的主流观点相反,即铜绿假单胞菌是大多数囊性纤维化患者的主要病原体,在这里分析和报告的患者样本中,只有一半的样本以铜绿假单胞菌为主导菌属。与住院患者相比,门诊患者中链球菌的分数代表增加是稳定肺病的最强预测因子。最常见的链球菌包括通常与口腔相关的物种(唾液链球菌和中间链球菌)和米勒链球菌组的物种。这些链球菌可能在增加囊性纤维化肺部环境的多样性和促进患者稳定方面发挥重要作用。

相似文献

1
Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability.
J Bacteriol. 2012 Sep;194(17):4709-17. doi: 10.1128/JB.00566-12. Epub 2012 Jun 29.
2
The Yin and Yang of Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions.
J Bacteriol. 2019 May 8;201(11). doi: 10.1128/JB.00115-19. Print 2019 Jun 1.
3
Different next generation sequencing platforms produce different microbial profiles and diversity in cystic fibrosis sputum.
J Microbiol Methods. 2016 Nov;130:95-99. doi: 10.1016/j.mimet.2016.09.002. Epub 2016 Sep 5.
4
Changes in the lung bacteriome in relation to antipseudomonal therapy in children with cystic fibrosis.
Folia Microbiol (Praha). 2018 Mar;63(2):237-248. doi: 10.1007/s12223-017-0562-3. Epub 2017 Nov 10.
5
A molecular comparison of microbial communities in bronchiectasis and cystic fibrosis.
Eur Respir J. 2013 Apr;41(4):991-3. doi: 10.1183/09031936.00052712.
6
Reemergence of Lower-Airway Microbiota in Lung Transplant Patients with Cystic Fibrosis.
Ann Am Thorac Soc. 2016 Dec;13(12):2132-2142. doi: 10.1513/AnnalsATS.201606-431OC.
8
Molecular analysis of diversity within the genus Pseudomonas in the lungs of cystic fibrosis patients.
Diagn Microbiol Infect Dis. 2009 Mar;63(3):261-7. doi: 10.1016/j.diagmicrobio.2008.11.011.
9
A novel microbiota stratification system predicts future exacerbations in bronchiectasis.
Ann Am Thorac Soc. 2014 May;11(4):496-503. doi: 10.1513/AnnalsATS.201310-335OC.
10
Effect of inhaled tobramycin on early Pseudomonas aeruginosa colonisation in patients with cystic fibrosis.
Lancet. 2001 Sep 22;358(9286):983-4. doi: 10.1016/S0140-6736(01)06124-4.

引用本文的文献

1
Auto-aggregation in is driven by the Pel polysaccharide.
mBio. 2025 Jul 7:e0119625. doi: 10.1128/mbio.01196-25.
2
rhamnolipids stabilize human rhinovirus 14 virions.
bioRxiv. 2025 Jun 4:2025.06.04.657910. doi: 10.1101/2025.06.04.657910.
3
A Perspective on Lung Cancer and Lung Microbiome: Insight on Immunity.
Immun Inflamm Dis. 2025 Feb;13(2):e70145. doi: 10.1002/iid3.70145.
5
E.PathDash, pathway activation analysis of publicly available pathogen gene expression data.
mSystems. 2024 Nov 19;9(11):e0103024. doi: 10.1128/msystems.01030-24. Epub 2024 Oct 18.
6
Dpr-mediated HO resistance contributes to streptococcus survival in a cystic fibrosis airway model system.
J Bacteriol. 2024 Jul 25;206(7):e0017624. doi: 10.1128/jb.00176-24. Epub 2024 Jun 28.
7
Insights into the Adolescent Cystic Fibrosis Airway Microbiome Using Shotgun Metagenomics.
Int J Mol Sci. 2024 Mar 31;25(7):3893. doi: 10.3390/ijms25073893.
8
as a model to study polymicrobial synergy and dysbiosis.
Front Cell Infect Microbiol. 2023 Dec 21;13:1279380. doi: 10.3389/fcimb.2023.1279380. eCollection 2023.
10
Commensal colonization reduces burden and subsequent airway damage.
Front Cell Infect Microbiol. 2023 May 25;13:1144157. doi: 10.3389/fcimb.2023.1144157. eCollection 2023.

本文引用的文献

1
Decade-long bacterial community dynamics in cystic fibrosis airways.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5809-14. doi: 10.1073/pnas.1120577109. Epub 2012 Mar 26.
2
Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison.
PLoS One. 2011;6(7):e22788. doi: 10.1371/journal.pone.0022788. Epub 2011 Jul 29.
3
UCHIME improves sensitivity and speed of chimera detection.
Bioinformatics. 2011 Aug 15;27(16):2194-200. doi: 10.1093/bioinformatics/btr381. Epub 2011 Jun 23.
4
Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation?
J Cyst Fibros. 2011 Sep;10(5):357-65. doi: 10.1016/j.jcf.2011.05.002. Epub 2011 Jun 12.
6
Iron and CF-related anemia: expanding clinical and biochemical relationships.
Pediatr Pulmonol. 2011 Feb;46(2):160-5. doi: 10.1002/ppul.21335. Epub 2010 Oct 20.
7
Detection and accurate identification of new or emerging bacteria in cystic fibrosis patients.
Clin Microbiol Infect. 2010 Jul;16(7):809-20. doi: 10.1111/j.1469-0691.2010.03236.x.
8
Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010 Oct 1;26(19):2460-1. doi: 10.1093/bioinformatics/btq461. Epub 2010 Aug 12.
9
Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis.
ISME J. 2011 Jan;5(1):20-9. doi: 10.1038/ismej.2010.88. Epub 2010 Jul 15.
10
Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients.
PLoS One. 2010 Jun 23;5(6):e11044. doi: 10.1371/journal.pone.0011044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验