Suppr超能文献

不同的下一代测序平台在囊性纤维化痰液中产生不同的微生物谱和多样性。

Different next generation sequencing platforms produce different microbial profiles and diversity in cystic fibrosis sputum.

作者信息

Hahn Andrea, Sanyal Amit, Perez Geovanny F, Colberg-Poley Anamaris M, Campos Joseph, Rose Mary C, Pérez-Losada Marcos

机构信息

Division of Infectious Diseases, Children's National Health System (CNHS), Washington, DC, USA; Research Center for Genetic Medicine, CNHS, Washington, DC, USA; Department of Pediatrics, George Washington University (GWU), Washington, DC, USA.

GWU School of Medicine, Washington, DC, USA.

出版信息

J Microbiol Methods. 2016 Nov;130:95-99. doi: 10.1016/j.mimet.2016.09.002. Epub 2016 Sep 5.

Abstract

BACKGROUND

Cystic fibrosis (CF) is an autosomal recessive disease characterized by recurrent lung infections. Studies of the lung microbiome have shown an association between decreasing diversity and progressive disease. 454 pyrosequencing has frequently been used to study the lung microbiome in CF, but will no longer be supported. We sought to identify the benefits and drawbacks of using two state-of-the-art next generation sequencing (NGS) platforms, MiSeq and PacBio RSII, to characterize the CF lung microbiome. Each has its advantages and limitations.

METHODS

Twelve samples of extracted bacterial DNA were sequenced on both MiSeq and PacBio NGS platforms. DNA was amplified for the V4 region of the 16S rRNA gene and libraries were sequenced on the MiSeq sequencing platform, while the full 16S rRNA gene was sequenced on the PacBio RSII sequencing platform. Raw FASTQ files generated by the MiSeq and PacBio platforms were processed in mothur v1.35.1.

RESULTS

There was extreme discordance in alpha-diversity of the CF lung microbiome when using the two platforms. Because of its depth of coverage, sequencing of the 16S rRNA V4 gene region using MiSeq allowed for the observation of many more operational taxonomic units (OTUs) and higher Chao1 and Shannon indices than the PacBio RSII. Interestingly, several patients in our cohort had Escherichia, an unusual pathogen in CF. Also, likely because of its coverage of the complete 16S rRNA gene, only PacBio RSII was able to identify Burkholderia, an important CF pathogen.

CONCLUSION

When comparing microbiome diversity in clinical samples from CF patients using 16S sequences, MiSeq and PacBio NGS platforms may generate different results in microbial community composition and structure. It may be necessary to use different platforms when trying to correctly identify dominant pathogens versus measuring alpha-diversity estimates, and it would be important to use the same platform for comparisons to minimize errors in interpretation.

摘要

背景

囊性纤维化(CF)是一种常染色体隐性疾病,其特征为反复的肺部感染。肺部微生物组研究表明,微生物多样性降低与疾病进展之间存在关联。454焦磷酸测序法曾经常用于研究CF患者的肺部微生物组,但该方法将不再被支持。我们试图确定使用两种最先进的新一代测序(NGS)平台,即MiSeq和PacBio RSII,来表征CF肺部微生物组的优缺点。每种平台都有其优势和局限性。

方法

在MiSeq和PacBio NGS平台上对12份提取的细菌DNA样本进行测序。对16S rRNA基因的V4区域进行DNA扩增,并在MiSeq测序平台上对文库进行测序,而完整的16S rRNA基因则在PacBio RSII测序平台上进行测序。由MiSeq和PacBio平台生成的原始FASTQ文件在mothur v1.35.1中进行处理。

结果

使用这两种平台时,CF肺部微生物组的α多样性存在极大差异。由于MiSeq对16S rRNA V4基因区域的测序深度,与PacBio RSII相比,能够观察到更多的可操作分类单元(OTU),以及更高的Chao1和香农指数。有趣的是,我们队列中的几名患者感染了大肠埃希菌,这在CF中是一种不常见的病原体。此外,可能由于其对完整16S rRNA基因的覆盖,只有PacBio RSII能够鉴定出伯克霍尔德菌,这是一种重要的CF病原体。

结论

在使用16S序列比较CF患者临床样本中的微生物组多样性时,MiSeq和PacBio NGS平台可能会在微生物群落组成和结构方面产生不同的结果。在试图正确识别主要病原体与测量α多样性估计值时,可能需要使用不同的平台,并且为了尽量减少解释中的误差,在进行比较时使用相同的平台非常重要。

相似文献

1
Different next generation sequencing platforms produce different microbial profiles and diversity in cystic fibrosis sputum.
J Microbiol Methods. 2016 Nov;130:95-99. doi: 10.1016/j.mimet.2016.09.002. Epub 2016 Sep 5.
3
Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.
BMC Microbiol. 2016 Nov 14;16(1):274. doi: 10.1186/s12866-016-0891-4.
7
Comparison of iSeq and MiSeq as the two platforms for 16S rRNA sequencing in the study of the gut of rat microbiome.
Appl Microbiol Biotechnol. 2022 Nov;106(22):7671-7681. doi: 10.1007/s00253-022-12251-z. Epub 2022 Nov 2.
8
The metabolic footprint of the airway bacterial community in cystic fibrosis.
Microbiome. 2017 Jun 30;5(1):67. doi: 10.1186/s40168-017-0289-z.
10

引用本文的文献

1
Improving Bacterial Metagenomic Research through Long-Read Sequencing.
Microorganisms. 2024 May 4;12(5):935. doi: 10.3390/microorganisms12050935.
2
Conservation and diversity of the pollen microbiome of Pan-American maize using PacBio and MiSeq.
Front Microbiol. 2023 Dec 21;14:1276241. doi: 10.3389/fmicb.2023.1276241. eCollection 2023.
3
The presence of cystic fibrosis-related diabetes modifies the sputum microbiome in cystic fibrosis disease.
Am J Physiol Lung Cell Mol Physiol. 2024 Feb 1;326(2):L125-L134. doi: 10.1152/ajplung.00219.2023. Epub 2023 Dec 12.
4
Retrorsine Cooperates with Gut Microbiota to Promote Hepatic Sinusoidal Obstruction Syndrome by Disrupting the Gut Barrier.
J Clin Transl Hepatol. 2022 Dec 28;10(6):1086-1098. doi: 10.14218/JCTH.2021.00398. Epub 2022 Mar 11.
6
Whole-genome sequencing and comparative analysis of Helicobacter pylori GZ7 strain isolated from China.
Folia Microbiol (Praha). 2022 Dec;67(6):923-934. doi: 10.1007/s12223-022-00989-y. Epub 2022 Jul 12.
7
Normalization of clonal diversity in gene therapy studies using shape constrained splines.
Sci Rep. 2022 Mar 9;12(1):3836. doi: 10.1038/s41598-022-05837-0.
8
Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections.
Front Microbiol. 2022 Jan 6;12:708550. doi: 10.3389/fmicb.2021.708550. eCollection 2021.
9
Exploring the role of gut microbiota in host feeding behavior among breeds in swine.
BMC Microbiol. 2022 Jan 3;22(1):1. doi: 10.1186/s12866-021-02409-6.

本文引用的文献

1
Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.
PeerJ. 2016 Mar 28;4:e1869. doi: 10.7717/peerj.1869. eCollection 2016.
3
Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
BMC Genomics. 2015;16 Suppl 12(Suppl 12):S9. doi: 10.1186/1471-2164-16-S12-S9. Epub 2015 Dec 9.
5
The vocabulary of microbiome research: a proposal.
Microbiome. 2015 Jul 30;3:31. doi: 10.1186/s40168-015-0094-5. eCollection 2015.
6
Assessment of airway microbiota and inflammation in cystic fibrosis using multiple sampling methods.
Ann Am Thorac Soc. 2015 Feb;12(2):221-9. doi: 10.1513/AnnalsATS.201407-310OC.
7
Implications of multiple freeze-thawing on respiratory samples for culture-independent analyses.
J Cyst Fibros. 2015 Jul;14(4):464-7. doi: 10.1016/j.jcf.2014.10.004. Epub 2014 Oct 24.
9
Prevalence and persistence of Escherichia coli in the airways of cystic fibrosis patients - an unrecognized CF pathogen?
Int J Med Microbiol. 2014 May;304(3-4):415-21. doi: 10.1016/j.ijmm.2014.02.008. Epub 2014 Feb 19.
10
Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis.
J Clin Microbiol. 2014 Feb;52(2):425-37. doi: 10.1128/JCM.02204-13. Epub 2013 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验