Suppr超能文献

尖峰发放皮层网络中活动模式的持续和存储:后超极化电流和乙酰胆碱对 S 型信号的调制。

Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine.

机构信息

Graduate Program in Cognitive and Neural Systems, Center for Adaptive Systems, Center of Excellence for Learning in Education, Science, and Technology, Center for Computational Neuroscience and Neural Technology, Boston University, Boston MA, USA.

出版信息

Front Comput Neurosci. 2012 Jun 29;6:42. doi: 10.3389/fncom.2012.00042. eCollection 2012.

Abstract

Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network stabilizes.

摘要

许多皮质网络包含递归架构,这些架构在将输入模式存储在短期记忆 (STM) 之前对其进行转换。 20 世纪 70 年代的定理表明,基于速率的反馈信号函数如何在中心抑制型周围网络中控制这个过程。 信号函数为 sigmoid,它会在抑制阈值以下抑制输入,将其视为噪声,而在抑制阈值以上则会增强对比度,然后再进行模式存储。本文描述了反馈信号、神经调制和递归连接的变化如何改变尖峰神经元的中心抑制型周围网络中的模式处理。 在尖峰神经元中,快速、中速和慢速后超极化 (AHP) 电流控制 sigmoid 信号阈值和斜率。乙酰胆碱 (ACh) 对 AHP 电流的调制可以改变 sigmoid 的形状,并改变网络动态。例如,降低信号函数阈值并增加斜率可以延长部分对比度增强模式的持续时间,增加 STM 中存储的活动细胞数量,或者如果连接是距离依赖性的,则导致细胞活动聚类。这些结果阐明了基底前脑的胆碱能调制如何改变类别学习电路的警觉性,从而改变它们对预测不匹配的敏感性,从而控制学习到的类别是否编码具体或抽象特征,正如自适应共振理论所预测的那样。 分析包括全局、距离依赖性和中间神经元介导的电路。 在适当程度的递归兴奋和抑制下,尖峰网络在刺激消除后 800 毫秒或更长时间内保持部分对比度增强模式,然后解决为没有存储的模式,或者为一个或多个获胜者的胜者全拿 (WTA) 存储模式。 抑制的增强通过减缓向稳定性的转变来延长部分对比度增强的模式,而兴奋的增强在网络稳定时会产生更多的获胜者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dca/3386521/0a9f127dc2e7/fncom-06-00042-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验