Suppr超能文献

超极化后电流和乙酰胆碱控制脉冲发放皮层模型中的S形传递函数。

After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model.

作者信息

Palma Jesse, Versace Massimiliano, Grossberg Stephen

机构信息

Center for Adaptive Systems, Department of Cognitive and Neural Systems, and Center of Excellence for Learning in Education, Science, and Technology, Boston University, Boston, MA 02215, USA.

出版信息

J Comput Neurosci. 2012 Apr;32(2):253-80. doi: 10.1007/s10827-011-0354-8. Epub 2011 Jul 21.

Abstract

Recurrent networks are ubiquitous in the brain, where they enable a diverse set of transformations during perception, cognition, emotion, and action. It has been known since the 1970's how, in rate-based recurrent on-center off-surround networks, the choice of feedback signal function can control the transformation of input patterns into activity patterns that are stored in short term memory. A sigmoid signal function may, in particular, control a quenching threshold below which inputs are suppressed as noise and above which they may be contrast enhanced before the resulting activity pattern is stored. The threshold and slope of the sigmoid signal function determine the degree of noise suppression and of contrast enhancement. This article analyses how sigmoid signal functions and their shape may be determined in biophysically realistic spiking neurons. Combinations of fast, medium, and slow after-hyperpolarization (AHP) currents, and their modulation by acetylcholine (ACh), can control sigmoid signal threshold and slope. Instead of a simple gain in excitability that was previously attributed to ACh, cholinergic modulation may cause translation of the sigmoid threshold. This property clarifies how activation of ACh by basal forebrain circuits, notably the nucleus basalis of Meynert, may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract information, as predicted by Adaptive Resonance Theory.

摘要

循环神经网络在大脑中无处不在,它们在感知、认知、情感和行动过程中实现了各种各样的转换。自20世纪70年代以来,人们就已经知道,在基于速率的循环中心-外周网络中,反馈信号函数的选择如何控制输入模式向存储在短期记忆中的活动模式的转换。特别是,一个Sigmoid信号函数可能控制一个淬灭阈值,低于该阈值时输入被作为噪声抑制,高于该阈值时,在最终的活动模式被存储之前,它们可能会被对比度增强。Sigmoid信号函数的阈值和斜率决定了噪声抑制和对比度增强的程度。本文分析了在生物物理上现实的脉冲神经元中,Sigmoid信号函数及其形状是如何确定的。快速、中等和慢速超极化后电流(AHP)的组合,以及它们被乙酰胆碱(ACh)的调制,可以控制Sigmoid信号的阈值和斜率。胆碱能调制可能导致Sigmoid阈值的平移,而不是像以前认为的那样简单地提高兴奋性。这一特性阐明了基底前脑回路,特别是迈内特基底核激活ACh如何改变类别学习回路的警觉性,从而改变它们对预测性不匹配的敏感性,进而像自适应共振理论所预测的那样,控制所学类别是编码具体信息还是抽象信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验